Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
add user workspace
==Work 2==

<pre>
<h3>Array Test</h3>

$latex
|x| = \left\{
\begin{array}{ll}
x &amp; \text{if \( x \geq 0 \)};
\\
-x &amp; \text{if \( x &lt; 0 \)}.
\end{array}
\right.
&amp;fg=000000$

$latex
|x| = \left\{
\begin{array}{ll}
x &amp; \text{if}~ x \geq 0;
\\
-x &amp; \text{if}~ x &lt; 0.
\end{array}
\right.
&amp;fg=000000$

$latex
\begin{array}{*{9}{l}}
Alpha &amp; Bravo &amp; Charlie &amp; Delta &amp; Echo &amp; Foxtrot &amp; Golf &amp; Hotel &amp; India
\\
Juliet &amp; Kilo &amp; Lima &amp; Mike &amp; November &amp; Oscar &amp; Papa &amp; Quebec &amp; Romeo
\\
Sierra &amp; Tango &amp; Uniform &amp; Victor &amp; Whiskey &amp; X\text{-}ray &amp; Yankee &amp; Zulu &amp; \varnothing
\end{array}&amp;fg=000000$

<h3>Matrix Test</h3>

$latex
\begin{matrix}
Alpha &amp; Bravo &amp; Charlie &amp; Delta &amp; Echo &amp; Foxtrot &amp; Golf &amp; Hotel &amp; India
\\
Juliet &amp; Kilo &amp; Lima &amp; Mike &amp; November &amp; Oscar &amp; Papa &amp; Quebec &amp; Romeo
\\
Sierra &amp; Tango &amp; Uniform &amp; Victor &amp; Whiskey &amp; X\text{-}ray &amp; Yankee &amp; Zulu &amp; \varnothing
\end{matrix}&amp;fg=000000$

<h3>Tabular Test 1</h3>

$latex
\begin{tabular}{lll}
Chicago &amp; U.S.A. &amp; 1893
\\
Z\"{u}rich &amp; Switzerland &amp; 1897
\\
Paris &amp; France &amp; 1900
\\
Heidelberg &amp; Germany &amp; 1904
\\
Rome &amp; Italy &amp; 1908
\end{tabular}&amp;fg=000000$

<h3>Tabular Test 2</h3>

$latex
\begin{tabular}{|r|r|}
\hline
\( n \) &amp; \( n! \) \\
\hline
1 &amp; 1 \\
2 &amp; 2 \\
3 &amp; 6 \\
4 &amp; 24 \\
5 &amp; 120 \\
6 &amp; 720 \\
7 &amp; 5040 \\
8 &amp; 40320 \\
9 &amp; 362880 \\
10 &amp; 3628800 \\
\hline
\end{tabular}&amp;fg=000000$

<h3>Tabular Test 3</h3>

$latex
\begin{tabular}{|c|c|*{16}{c}|}
\multicolumn{18}{c}{Table 1. Higher Order Propositions \( (n = 1) \)} \\[4pt]
\hline
\( f \) &amp; \( f \) &amp;
\( m_{0} \) &amp; \( m_{1} \) &amp; \( m_{2} \) &amp; \( m_{3} \) &amp;
\( m_{4} \) &amp; \( m_{5} \) &amp; \( m_{6} \) &amp; \( m_{7} \) &amp;
\( m_{8} \) &amp; \( m_{9} \) &amp; \( m_{10} \) &amp; \( m_{11} \) &amp;
\( m_{12} \) &amp; \( m_{13} \) &amp; \( m_{14} \) &amp; \( m_{15} \) \\[4pt]
\hline
\( f_0 \) &amp; \texttt{()} &amp;
0 &amp; 1 &amp; 0 &amp; 1 &amp; 0 &amp; 1 &amp; 0 &amp; 1 &amp; 0 &amp; 1 &amp; 0 &amp; 1 &amp; 0 &amp; 1 &amp; 0 &amp; 1 \\[4pt]
\( f_1 \) &amp; \texttt{(}\( x \)\texttt{)} &amp;
0 &amp; 0 &amp; 1 &amp; 1 &amp; 0 &amp; 0 &amp; 1 &amp; 1 &amp; 0 &amp; 0 &amp; 1 &amp; 1 &amp; 0 &amp; 0 &amp; 1 &amp; 1 \\[4pt]
\( f_2 \) &amp; \( x \) &amp;
0 &amp; 0 &amp; 0 &amp; 0 &amp; 1 &amp; 1 &amp; 1 &amp; 1 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 1 &amp; 1 &amp; 1 &amp; 1 \\[4pt]
\( f_3 \) &amp; \texttt{(())} &amp;
0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 1 &amp; 1 &amp; 1 &amp; 1 &amp; 1 &amp; 1 &amp; 1 &amp; 1 \\[4pt]
\hline
\end{tabular}&amp;fg=000000$

<h3>Tabular Test 4</h3>

$latex
\begin{tabular}{|*{7}{c|}}
\multicolumn{7}{c}{\textbf{Table A1. Propositional Forms on Two Variables}} \\
\hline
\( L_1 \) &amp;
\( L_2 \) &amp;&amp;
\( L_3 \) &amp;
\( L_4 \) &amp;
\( L_5 \) &amp;
\( L_6 \) \\
\hline
&amp; &amp; \( x = \) &amp; 1 1 0 0 &amp; &amp; &amp; \\
&amp; &amp; \( y = \) &amp; 1 0 1 0 &amp; &amp; &amp; \\
\hline
\( f_{0} \) &amp;
\( f_{0000} \) &amp;&amp;
0 0 0 0 &amp;
\( (~) \) &amp;
false &amp;
\( 0 \)
\\
\( f_{1} \) &amp;
\( f_{0001} \) &amp;&amp;
0 0 0 1 &amp;
\( (x)(y) \) &amp;
neither \( x \) nor \( y \) &amp;
\( \lnot x \land \lnot y \)
\\
\( f_{2} \) &amp;
\( f_{0010} \) &amp;&amp;
0 0 1 0 &amp;
\( (x)\ y \) &amp;
\( y \) without \( x \) &amp;
\( \lnot x \land y \)
\\
\( f_{3} \) &amp;
\( f_{0011} \) &amp;&amp;
0 0 1 1 &amp;
\( (x) \) &amp;
not \( x \) &amp;
\( \lnot x \)
\\
\( f_{4} \) &amp;
\( f_{0100} \) &amp;&amp;
0 1 0 0 &amp;
\( x\ (y) \) &amp;
\( x \) without \( y \) &amp;
\( x \land \lnot y \)
\\
\( f_{5} \) &amp;
\( f_{0101} \) &amp;&amp;
0 1 0 1 &amp;
\( (y) \) &amp;
not \( y \) &amp;
\( \lnot y \)
\\
\( f_{6} \) &amp;
\( f_{0110} \) &amp;&amp;
0 1 1 0 &amp;
\( (x,\ y) \) &amp;
\( x \) not equal to \( y \) &amp;
\( x \ne y \)
\\
\( f_{7} \) &amp;
\( f_{0111} \) &amp;&amp;
0 1 1 1 &amp;
\( (x\ y) \) &amp;
not both \( x \) and \( y \) &amp;
\( \lnot x \lor \lnot y \)
\\
\hline
\( f_{8} \) &amp;
\( f_{1000} \) &amp;&amp;
1 0 0 0 &amp;
\( x\ y \) &amp;
\( x \) and \( y \) &amp;
\( x \land y \)
\\
\( f_{9} \) &amp;
\( f_{1001} \) &amp;&amp;
1 0 0 1 &amp;
\( ((x,\ y)) \) &amp;
\( x \) equal to \( y \) &amp;
\( x = y \)
\\
\( f_{10} \) &amp;
\( f_{1010} \) &amp;&amp;
1 0 1 0 &amp;
\( y \) &amp;
\( y \) &amp;
\( y \)
\\
\( f_{11} \) &amp;
\( f_{1011} \) &amp;&amp;
1 0 1 1 &amp;
\( (x\ (y)) \) &amp;
not \( x \) without \( y \) &amp;
\( x \Rightarrow y \)
\\
\( f_{12} \) &amp;
\( f_{1100} \) &amp;&amp;
1 1 0 0 &amp;
\( x \) &amp;
\( x \) &amp;
\( x \)
\\
\( f_{13} \) &amp;
\( f_{1101} \) &amp;&amp;
1 1 0 1 &amp;
\( ((x)\ y) \) &amp;
not \( y \) without \( x \) &amp;
\( x \Leftarrow y \)
\\
\( f_{14} \) &amp;
\( f_{1110} \) &amp;&amp;
1 1 1 0 &amp;
\( ((x)(y)) \) &amp;
\( x \) or \( y \) &amp;
\( x \lor y \)
\\
\( f_{15} \) &amp;
\( f_{1111} \) &amp;&amp;
1 1 1 1 &amp;
\( ((~)) \) &amp;
true &amp;
\( 1 \)
\\
\hline
\end{tabular}&amp;fg=000000$

<h3>Table Test 1</h3>

<table border="0" style="border-width:0;width:100%;">

<tr>
<td style="border-top:1px solid white;width:35%;"></td>

<td style="border-top:1px solid white;width:65%;">
Can we ever become what we weren’t in eternity?
Can we ever learn what we weren’t born knowing?
Can we ever share what we never had in common?</td>
</tr>

</table>

Lately I've begun to see that these ancient riddles of change, coming to know, and communication all spring from a common root.

<h3>Table Test 2</h3>

<table align="left" border="0" style="border-width:0;">

<tr>
<td style="border-top:1px solid white;">
<p>Everything considered, a determined soul will always manage.</p></td>

<td style="border-top:1px solid white;">(41)</td>
</tr>

<tr>
<td style="border-top:1px solid white;">
<p>To a man devoid of blinders, there is no finer sight than that of the intelligence at grips with a reality that transcends it.</p></td>

<td style="border-top:1px solid white;">(55)</td>
</tr>

</table>

<h3>Table Test 3</h3>

<table align="center" border="0">

<tr>
<td>
<br>
<p>Everything considered, a determined soul will always manage.</p></td>

<td><p>(41)</p></td>
</tr>

<tr>
<td>
<br>
<p>To a man devoid of blinders, there is no finer sight than that
of the intelligence at grips with a reality that transcends it.</p></td>

<td><p>(55)</p></td>
</tr>

</table>

<h3>Table Test 4</h3>

<table align="center" border="0" style="border-width:0;text-align:center;">

<tr>
<td style="border-top:1px solid white;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" width="500" height="168" border="0"></a></td>

<td style="border-top:1px solid white;">(1)</td>
</tr>

<tr>
<td style="border-top:1px solid white;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())=&nbsp;" width="500" height="168" border="0"></a></td>

<td style="border-top:1px solid white;">(2)</td>
</tr>

</table>

<h3>Table Test 5</h3>

<table align="center" border="0" style="text-align:center;">

<tr>
<td style="padding:10px;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" align="center" width="500" height="168" /></a></td>

<td style="padding:80px 10px;">(1)</td>
</tr>

<tr>
<td style="padding:10px;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())=&nbsp;" align="center" width="500" height="168" /></a></td>

<td style="padding:80px 10px;">(2)</td>
</tr>

</table>

<h3>Table Test 6</h3>

<table align="center" border="0" style="text-align:center;">

<caption><font size="+2">$latex \text{Table 1.} ~~ \text{Higher Order Propositions} ~ (n = 1) $</font></caption>

<tr>
<td style="border-bottom:2px solid black;">$latex m_{0} $</td>
<td style="border-bottom:2px solid black;">$latex m_{1} $</td>
<td style="border-bottom:2px solid black;">$latex m_{2} $</td>
<td style="border-bottom:2px solid black;">$latex m_{3} $</td>
<td style="border-bottom:2px solid black;">$latex m_{4} $</td>
<td style="border-bottom:2px solid black;">$latex m_{5} $</td>
<td style="border-bottom:2px solid black;">$latex m_{6} $</td>
<td style="border-bottom:2px solid black;">$latex m_{7} $</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
</tr>

</table>
</pre>
12,080

edits

Navigation menu