Changes

MyWikiBiz, Author Your Legacy — Thursday May 02, 2024
Jump to navigationJump to search
Line 10,931: Line 10,931:  
Against this background, other varieties of reflective extension can be specified by means of semantic equations that are considered to be imposed on the elements of <math>F.\!</math>  Taking the reflective extensions <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B})\!</math> as the first orders of a &ldquo;free&rdquo; project toward reflective closure, variant extensions can be described by relating their entries with those of comparable members in the standard sequences <math>\operatorname{Ref}^n (\text{A})\!</math> and <math>\operatorname{Ref}^n (\text{B}).\!</math>
 
Against this background, other varieties of reflective extension can be specified by means of semantic equations that are considered to be imposed on the elements of <math>F.\!</math>  Taking the reflective extensions <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B})\!</math> as the first orders of a &ldquo;free&rdquo; project toward reflective closure, variant extensions can be described by relating their entries with those of comparable members in the standard sequences <math>\operatorname{Ref}^n (\text{A})\!</math> and <math>\operatorname{Ref}^n (\text{B}).\!</math>
   −
A variant pair of reflective extensions, <math>\operatorname{Ref}^1 (\text{A} | E_1)\!</math> and <math>\operatorname{Ref}^1 (\text{B} | E_1),\!</math> are presented in Tables&nbsp;82 and 83, respectively.  These are identical to the corresponding free variants, <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B}),\!</math> with the exception of those entries that are constrained by the following system of semantic equations.
+
A variant pair of reflective extensions, <math>\operatorname{Ref}^1 (\text{A} | E_1)\!</math> and <math>\operatorname{Ref}^1 (\text{B} | E_1),\!</math> is presented in Tables&nbsp;82 and 83, respectively.  These are identical to the corresponding free variants, <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B}),\!</math> with the exception of those entries that are constrained by the following system of semantic equations.
    
{| align="center" cellspacing="8" width="90%"
 
{| align="center" cellspacing="8" width="90%"
Line 11,158: Line 11,158:  
<br>
 
<br>
   −
<pre>
+
Another pair of reflective extensions, <math>\operatorname{Ref}^1 (\text{A} | E_2)\!</math> and <math>\operatorname{Ref}^1 (\text{B} | E_2),\!</math> is presented in Tables&nbsp;84 and 85, respectively.  These are identical to the corresponding free variants, <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B}),\!</math> except for the entries constrained by the following semantic equations.
Another pair of reflective extensions, Ref1(A|E2) and Ref1(B|E2), are presented in Tables&nbsp;84 and 85, respectively.  These are identical to the corresponding "free" variants, Ref1(A) and Ref1(B), except for the entries constrained by the following semantic equations:
     −
E2: <<A>> = A, <<B>> = B, <<i>> = i, <<u>> = u.
+
{| align="center" cellspacing="8" width="90%"
</pre>
+
|
 +
<math>\begin{matrix}
 +
E_2 :
 +
&
 +
{}^{\langle\langle} \text{A} {}^{\rangle\rangle} = \text{A},
 +
&
 +
{}^{\langle\langle} \text{B} {}^{\rangle\rangle} = \text{B},
 +
&
 +
{}^{\langle\langle} \text{i} {}^{\rangle\rangle} = \text{i},
 +
&
 +
{}^{\langle\langle} \text{u} {}^{\rangle\rangle} = \text{u}.
 +
\end{matrix}</math>
 +
|}
    
<br>
 
<br>
12,080

edits

Navigation menu