| Line 10,739: |
Line 10,739: |
| | Raised angle brackets or ''supercilia'' <math>({}^{\langle} \ldots {}^{\rangle})\!</math> are here being used on a par with ordinary quotation marks <math>({}^{\backprime\backprime} \ldots {}^{\prime\prime})\!</math> to construct a new sign whose object is precisely the sign they enclose. | | Raised angle brackets or ''supercilia'' <math>({}^{\langle} \ldots {}^{\rangle})\!</math> are here being used on a par with ordinary quotation marks <math>({}^{\backprime\backprime} \ldots {}^{\prime\prime})\!</math> to construct a new sign whose object is precisely the sign they enclose. |
| | | | |
| − | Regarded as sign relations in their own right, <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B})\!</math> both have the following relational domains. | + | Regarded as sign relations in their own right, <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B})\!</math> are formed on the following relational domains. |
| | + | |
| | + | {| align="center" cellspacing="6" width="90%" |
| | + | | |
| | + | <math>\begin{array}{ccccl} |
| | + | O & = & O^{(1)} \cup O^{(2)} & = & |
| | + | \{ \text{A}, \text{B} \} |
| | + | ~ \cup ~ |
| | + | \{ |
| | + | {}^{\langle} \text{A} {}^{\rangle}, |
| | + | {}^{\langle} \text{B} {}^{\rangle}, |
| | + | {}^{\langle} \text{i} {}^{\rangle}, |
| | + | {}^{\langle} \text{u} {}^{\rangle} |
| | + | \} |
| | + | \\[8pt] |
| | + | S & = & S^{(1)} \cup S^{(2)} & = & |
| | + | \{ |
| | + | {}^{\langle} \text{A} {}^{\rangle}, |
| | + | {}^{\langle} \text{B} {}^{\rangle}, |
| | + | {}^{\langle} \text{i} {}^{\rangle}, |
| | + | {}^{\langle} \text{u} {}^{\rangle} |
| | + | \} |
| | + | ~ \cup ~ |
| | + | \{ |
| | + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle}, |
| | + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle}, |
| | + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle}, |
| | + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| | + | \} |
| | + | \\[8pt] |
| | + | I & = & I^{(1)} \cup I^{(2)} & = & |
| | + | \{ |
| | + | {}^{\langle} \text{A} {}^{\rangle}, |
| | + | {}^{\langle} \text{B} {}^{\rangle}, |
| | + | {}^{\langle} \text{i} {}^{\rangle}, |
| | + | {}^{\langle} \text{u} {}^{\rangle} |
| | + | \} |
| | + | ~ \cup ~ |
| | + | \{ |
| | + | {}^{\langle\langle} \text{A} {}^{\rangle\rangle}, |
| | + | {}^{\langle\langle} \text{B} {}^{\rangle\rangle}, |
| | + | {}^{\langle\langle} \text{i} {}^{\rangle\rangle}, |
| | + | {}^{\langle\langle} \text{u} {}^{\rangle\rangle} |
| | + | \} |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| | <pre> | | <pre> |
| − | O = O<1> U O<2> = { A, B } U {<A>, <B>, <i>, <u>}.
| |
| − |
| |
| − | S = S<1> U S<2> = {<A>, <B>, <i>, <u>} U {<<A>>, <<B>>, <<i>>, <<u>>}.
| |
| − |
| |
| | Thus, S overlaps with O in the set of first order signs or second order objects S<1> = O<2>, exemplifying the extent to which signs have become objects in the new sign relations. | | Thus, S overlaps with O in the set of first order signs or second order objects S<1> = O<2>, exemplifying the extent to which signs have become objects in the new sign relations. |
| | | | |