Line 10,731:
Line 10,731:
<br>
<br>
−
<pre>
+
The common ''world'' <math>W\!</math> of the reflective extensions <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B})\!</math> is the totality of objects and signs they contain, namely, the following set of 10 elements.
−
The common "world" = {objects} U {signs} of the reflective extensions Ref1 (A) and Ref1 (B) is the set of 10 elements:
−
W = { A, B, <A>, <B>, <i>, <u>, <<A>>, <<B>>, <<i>>, <<u>>}.
+
{| align="center" cellspacing="8" width="90%"
+
| <math>W = \{ \text{A}, \text{B}, {}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle}, {}^{\langle\langle} \text{A} {}^{\rangle\rangle}, {}^{\langle\langle} \text{B} {}^{\rangle\rangle}, {}^{\langle\langle} \text{i} {}^{\rangle\rangle}, {}^{\langle\langle} \text{u} {}^{\rangle\rangle} \}.</math>
+
|}
+
<pre>
Here, I employ raised angle brackets or "supercilia" (<...>) on a par with ordinary quotation marks ("..."), using them in the context of informal discussion to configure a new sign whose object is precisely the sign they enclose.
Here, I employ raised angle brackets or "supercilia" (<...>) on a par with ordinary quotation marks ("..."), using them in the context of informal discussion to configure a new sign whose object is precisely the sign they enclose.