Changes

MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
Line 9,384: Line 9,384:  
|}
 
|}
   −
Consider a relation <math>L\!</math> of the following type.
+
[The following piece occurs in &sect; 6.35.]
 
  −
{| align="center" cellspacing="8" width="90%"
  −
| <math>L : \texttt{(} S \texttt{(} T \texttt{))}\!</math>
  −
|}
  −
 
  −
[The following piece occurs in &sect; 6.35]
      
The set of triples of dyadic relations, with pairwise cartesian products chosen in a pre-arranged order from a triple of three sets <math>(X, Y, Z),\!</math> is called the ''dyadic explosion'' of <math>X \times Y \times Z.\!</math>  This object is denoted <math>\operatorname{Explo}(X, Y, Z ~|~ 2),\!</math> read as the ''explosion of <math>X \times Y \times Z\!</math> by twos'', or more simply as <math>X, Y, Z ~\operatorname{choose}~ 2,\!</math> and defined as follows:
 
The set of triples of dyadic relations, with pairwise cartesian products chosen in a pre-arranged order from a triple of three sets <math>(X, Y, Z),\!</math> is called the ''dyadic explosion'' of <math>X \times Y \times Z.\!</math>  This object is denoted <math>\operatorname{Explo}(X, Y, Z ~|~ 2),\!</math> read as the ''explosion of <math>X \times Y \times Z\!</math> by twos'', or more simply as <math>X, Y, Z ~\operatorname{choose}~ 2,\!</math> and defined as follows:
    
{| align="center" cellspacing="8" width="90%"
 
{| align="center" cellspacing="8" width="90%"
| <math>\operatorname{Explo}(X, Y, Z ~|~ 2) ~=~ \operatorname{Pow}(X \times Y) \times \operatorname{Pow}(X \times Z) \times \operatorname{Pow}(Y \times Z).\!</math>
+
| <math>\operatorname{Explo}(X, Y, Z ~|~ 2) ~=~ \operatorname{Pow}(X \times Y) \times \operatorname{Pow}(X \times Z) \times \operatorname{Pow}(Y \times Z)\!</math>
 
|}
 
|}
   Line 9,405: Line 9,399:     
{| align="center" cellspacing="8" width="90%"
 
{| align="center" cellspacing="8" width="90%"
| <math>2^{XY} \times 2^{XZ} \times 2^{YZ} ~=~ 2^{(XY + XY + YZ)},\!</math>
+
| <math>2^{XY} \times 2^{XZ} \times 2^{YZ} ~=~ 2^{(XY + XY + YZ)}\!</math>
 
|}
 
|}
  
12,080

edits

Navigation menu