MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
171 bytes removed
, 15:05, 15 April 2013
Line 9,384: |
Line 9,384: |
| |} | | |} |
| | | |
− | Consider a relation <math>L\!</math> of the following type.
| + | [The following piece occurs in § 6.35.] |
− | | |
− | {| align="center" cellspacing="8" width="90%"
| |
− | | <math>L : \texttt{(} S \texttt{(} T \texttt{))}\!</math>
| |
− | |}
| |
− | | |
− | [The following piece occurs in § 6.35] | |
| | | |
| The set of triples of dyadic relations, with pairwise cartesian products chosen in a pre-arranged order from a triple of three sets <math>(X, Y, Z),\!</math> is called the ''dyadic explosion'' of <math>X \times Y \times Z.\!</math> This object is denoted <math>\operatorname{Explo}(X, Y, Z ~|~ 2),\!</math> read as the ''explosion of <math>X \times Y \times Z\!</math> by twos'', or more simply as <math>X, Y, Z ~\operatorname{choose}~ 2,\!</math> and defined as follows: | | The set of triples of dyadic relations, with pairwise cartesian products chosen in a pre-arranged order from a triple of three sets <math>(X, Y, Z),\!</math> is called the ''dyadic explosion'' of <math>X \times Y \times Z.\!</math> This object is denoted <math>\operatorname{Explo}(X, Y, Z ~|~ 2),\!</math> read as the ''explosion of <math>X \times Y \times Z\!</math> by twos'', or more simply as <math>X, Y, Z ~\operatorname{choose}~ 2,\!</math> and defined as follows: |
| | | |
| {| align="center" cellspacing="8" width="90%" | | {| align="center" cellspacing="8" width="90%" |
− | | <math>\operatorname{Explo}(X, Y, Z ~|~ 2) ~=~ \operatorname{Pow}(X \times Y) \times \operatorname{Pow}(X \times Z) \times \operatorname{Pow}(Y \times Z).\!</math> | + | | <math>\operatorname{Explo}(X, Y, Z ~|~ 2) ~=~ \operatorname{Pow}(X \times Y) \times \operatorname{Pow}(X \times Z) \times \operatorname{Pow}(Y \times Z)\!</math> |
| |} | | |} |
| | | |
Line 9,405: |
Line 9,399: |
| | | |
| {| align="center" cellspacing="8" width="90%" | | {| align="center" cellspacing="8" width="90%" |
− | | <math>2^{XY} \times 2^{XZ} \times 2^{YZ} ~=~ 2^{(XY + XY + YZ)},\!</math> | + | | <math>2^{XY} \times 2^{XZ} \times 2^{YZ} ~=~ 2^{(XY + XY + YZ)}\!</math> |
| |} | | |} |
| | | |