Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
Line 9,357: Line 9,357:     
'''Definition.'''  Given a cartesian product <math>X \times Y,\!</math> an ordered pair <math>(x, y) \in X \times Y,\!</math> has the type <math>S \cdot T,\!</math> written <math>(x, y) : S \cdot T,\!</math> if and only if <math>x \in S \subseteq X\!</math> and <math>y \in T \subseteq Y.\!</math>  Notice that an ordered pair may have many types.
 
'''Definition.'''  Given a cartesian product <math>X \times Y,\!</math> an ordered pair <math>(x, y) \in X \times Y,\!</math> has the type <math>S \cdot T,\!</math> written <math>(x, y) : S \cdot T,\!</math> if and only if <math>x \in S \subseteq X\!</math> and <math>y \in T \subseteq Y.\!</math>  Notice that an ordered pair may have many types.
 +
 +
'''Definition.'''  A relation <math>L \subseteq X \times Y\!</math> has type <math>S \cdot T,\!</math> written <math>L : S \cdot T,\!</math> if and only if every <math>(x, y) \in L\!</math> has type <math>S \cdot T,\!</math> that is, if and only if <math>L \subseteq S \times T\!</math> for some <math>S \subseteq X\!</math> and <math>T \subseteq Y.\!</math>
    
<pre>
 
<pre>
Definition.  A relation R c XxY has type S.T, written R : S.T, iff every <x, y> C R has type S.T, that is, iff R c SxT for some S c X and T c Y.
  −
   
Notation.  "Barred parentheses", like "(" and ")", will be used in pairs to indicate the negations of propositions and the complements of sets.  When an n place relation R is initially given relative to the domains X1, ... , Xn and a set S is being mentioned as a subset of one of them, say S c Xi, then the "relevant complement" of S in such a context is the one taken relative to Xi, that is:
 
Notation.  "Barred parentheses", like "(" and ")", will be used in pairs to indicate the negations of propositions and the complements of sets.  When an n place relation R is initially given relative to the domains X1, ... , Xn and a set S is being mentioned as a subset of one of them, say S c Xi, then the "relevant complement" of S in such a context is the one taken relative to Xi, that is:
  
12,080

edits

Navigation menu