MyWikiBiz, Author Your Legacy — Saturday November 23, 2024
Jump to navigationJump to search
156 bytes added
, 03:54, 24 February 2013
Line 9,355: |
Line 9,355: |
| | | |
| In this Section I describe a formal system of ''type expressions'' that are analogous to formulas of propositional logic, and I discuss their use as a calculus of predicates for classifying, analyzing, and drawing typical inferences about <math>n\!</math>-place relations, in particular, for reasoning about the results of operations indicated or performed on relations and about the properties of their transformations and combinations. | | In this Section I describe a formal system of ''type expressions'' that are analogous to formulas of propositional logic, and I discuss their use as a calculus of predicates for classifying, analyzing, and drawing typical inferences about <math>n\!</math>-place relations, in particular, for reasoning about the results of operations indicated or performed on relations and about the properties of their transformations and combinations. |
| + | |
| + | '''Definition.''' Given a cartesian product <math>X \times Y,\!</math> an ordered pair <math>(x, y) \in X \times Y,\!</math> has the type <math>S \cdot T,\!</math> written <math>(x, y) : S \cdot T,\!</math> if and only if <math>x \in S \subseteq X\!</math> and <math>y \in T \subseteq Y.\!</math> Notice that an ordered pair can have many types. |
| | | |
| <pre> | | <pre> |
− | Definition. Given a cartesian product XxY, an ordered pair <x, y> C XxY has the type S.T, written <x, y> : S.T, iff x C S c X and y C T c Y. Notice that an ordered pair can have many types.
| |
− |
| |
| Definition. A relation R c XxY has type S.T, written R : S.T, iff every <x, y> C R has type S.T, that is, iff R c SxT for some S c X and T c Y. | | Definition. A relation R c XxY has type S.T, written R : S.T, iff every <x, y> C R has type S.T, that is, iff R c SxT for some S c X and T c Y. |
| | | |