Changes

MyWikiBiz, Author Your Legacy — Monday February 17, 2025
Jump to navigationJump to search
Line 9,339: Line 9,339:  
The corresponding projections of <math>\operatorname{Proj}^{(2)} L_0\!</math> and <math>\operatorname{Proj}^{(2)} L_1\!</math> are identical.  In fact, all six projections, taken at the level of logical abstraction, constitute precisely the same dyadic relation, isomorphic to the whole of <math>\mathbb{B} \times \mathbb{B}\!</math> and expressed by the universal constant proposition <math>1 : \mathbb{B} \times \mathbb{B} \to \mathbb{B}.\!</math>  In summary:
 
The corresponding projections of <math>\operatorname{Proj}^{(2)} L_0\!</math> and <math>\operatorname{Proj}^{(2)} L_1\!</math> are identical.  In fact, all six projections, taken at the level of logical abstraction, constitute precisely the same dyadic relation, isomorphic to the whole of <math>\mathbb{B} \times \mathbb{B}\!</math> and expressed by the universal constant proposition <math>1 : \mathbb{B} \times \mathbb{B} \to \mathbb{B}.\!</math>  In summary:
   −
<pre>
+
{| align="center" cellspacing="8" width="90%"
R012  = R112  = 112  = B2,
+
|
R013  =  R113  =  113  =  B2,
+
<math>\begin{array}{lllll}
R023  =  R123  =  123  =  B2.
+
(L_0)_{12} & = & (L_1)_{12} & \cong & \mathbb{B}^2
 +
\\[4pt]
 +
(L_0)_{13} & = & (L_1)_{13} & \cong & \mathbb{B}^2
 +
\\[4pt]
 +
(L_0)_{23} & = & (L_1)_{23} & \cong & \mathbb{B}^2
 +
\end{array}</math>
 +
|}
   −
Thus, R0 and R1 are both examples of irreducibly triadic relations.
+
Thus, <math>L_0\!</math> and <math>L_1\!</math> are both examples of irreducibly triadic relations.
</pre>
      
===6.37. Propositional Types===
 
===6.37. Propositional Types===
12,080

edits

Navigation menu