| As it happens, each of the relations R C {A, B} is uniquely determined by its projective triple Proj (R). This can be seen as follows. Consider any coordinate position <s, i> in the plane SxI. If <s, i> is not in RSI then there can be no element <o, s, i> in R, therefore we may restrict our attention to positions <s, i> in RSI, knowing that there exist at least |RSI| = 8 elements in R, and seeking only to determine what objects o exist such that <o, s, i> is an element in the objective "fiber" of <s, i>. In other words, for what o C O is <o, s, i> C PrSI 1(<s, i>)? The fact that ROS has exactly one element <o, s> for each coordinate s C S and that ROI has exactly one element <o, i> for each coordinate i C I, plus the "coincidence" of it being the same o at any one choice for <s, i>, tells us that R has just the one element <o, s, i> over each point of SxI. This proves that both A and B are reducible in an informational sense to triples of dyadic relations, that is, they are "dyadically reducible". | | As it happens, each of the relations R C {A, B} is uniquely determined by its projective triple Proj (R). This can be seen as follows. Consider any coordinate position <s, i> in the plane SxI. If <s, i> is not in RSI then there can be no element <o, s, i> in R, therefore we may restrict our attention to positions <s, i> in RSI, knowing that there exist at least |RSI| = 8 elements in R, and seeking only to determine what objects o exist such that <o, s, i> is an element in the objective "fiber" of <s, i>. In other words, for what o C O is <o, s, i> C PrSI 1(<s, i>)? The fact that ROS has exactly one element <o, s> for each coordinate s C S and that ROI has exactly one element <o, i> for each coordinate i C I, plus the "coincidence" of it being the same o at any one choice for <s, i>, tells us that R has just the one element <o, s, i> over each point of SxI. This proves that both A and B are reducible in an informational sense to triples of dyadic relations, that is, they are "dyadically reducible". |