Changes

MyWikiBiz, Author Your Legacy — Thursday February 27, 2025
Jump to navigationJump to search
Line 8,578: Line 8,578:     
A ''partial equivalence relation'' (PER) on a set <math>X\!</math> is a relation <math>L \subseteq X \times X\!</math> that is an equivalence relation on its domain of definition <math>\operatorname{Quo} (L) \subseteq X.\!</math>  In this situation, <math>[x]_L\!</math> is empty for each <math>x\!</math> in <math>X\!</math> that is not in <math>\operatorname{Quo} (L).\!</math>  Another way of reaching the same concept is to call a PER a dyadic relation that is symmetric and transitive, but not necessarily reflexive.  Like the &ldquo;self-identical elements&rdquo; of old that epitomized the very definition of self-consistent existence in classical logic, the property of being a self-related or self-equivalent element in the purview of a PER on <math>X\!</math> singles out the members of <math>\operatorname{Quo} (L)\!</math> as those for which a properly meaningful existence can be contemplated.
 
A ''partial equivalence relation'' (PER) on a set <math>X\!</math> is a relation <math>L \subseteq X \times X\!</math> that is an equivalence relation on its domain of definition <math>\operatorname{Quo} (L) \subseteq X.\!</math>  In this situation, <math>[x]_L\!</math> is empty for each <math>x\!</math> in <math>X\!</math> that is not in <math>\operatorname{Quo} (L).\!</math>  Another way of reaching the same concept is to call a PER a dyadic relation that is symmetric and transitive, but not necessarily reflexive.  Like the &ldquo;self-identical elements&rdquo; of old that epitomized the very definition of self-consistent existence in classical logic, the property of being a self-related or self-equivalent element in the purview of a PER on <math>X\!</math> singles out the members of <math>\operatorname{Quo} (L)\!</math> as those for which a properly meaningful existence can be contemplated.
 +
 +
A ''moderate equivalence relation'' (MER) on the ''modus'' <math>M \subseteq X\!</math> is a relation on <math>X\!</math> whose restriction to <math>M\!</math> is an equivalence relation on <math>M.\!</math>  In symbols, <math>L \subseteq X \times X\!</math> such that <math>L|M \subseteq M \times M\!</math> is an equivalence relation.  Notice that the subset of restriction, or modus <math>M,\!</math> is a part of the definition, so the same relation <math>L\!</math> on <math>X\!</math> could be a MER or not depending on the choice of <math>M.\!</math>  In spite of how it sounds, a moderate equivalence relation can have more ordered pairs in it than the ordinary sort of equivalence relation on the same set.
    
<pre>
 
<pre>
A "moderate equivalence relation" (MER) on the "modus" M c X is a relation on X whose restriction to M is an equivalence relation on M.  In symbols, R c XxX such that R|M c MxM is an equivalence relation.  Notice that the subset of restriction, or modus M, is a part of the definition, so the same relation R on X could be a MER or not depending on the choice of M.  In spite of how it sounds, a moderate equivalence relation can have more ordered pairs in it than the ordinary sort of equivalence relation on the same set.
  −
   
In applying the equivalence class notation to a sign relation R, the definitions and examples considered so far only cover the case where the connotative component RSI is a total equivalence relation on the whole syntactic domain S.  The next job is to adapt this usage to PERs.
 
In applying the equivalence class notation to a sign relation R, the definitions and examples considered so far only cover the case where the connotative component RSI is a total equivalence relation on the whole syntactic domain S.  The next job is to adapt this usage to PERs.
  
12,080

edits

Navigation menu