Line 175:
Line 175:
In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, a few of these definitions are recorded below.
In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, a few of these definitions are recorded below.
−
{| align="center" cellspacing="6" width="90%"
+
{| align="center" cellspacing="8" width="90%"
|
|
<math>\begin{array}{lll}
<math>\begin{array}{lll}
Line 204:
Line 204:
Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1.
Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1.
−
Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation. The following properties of <math>~P~</math> can be defined:
+
Let <math>L \subseteq X \times Y\!</math> be an arbitrary 2-adic relation. The following properties of <math>L\!</math> can be defined:
−
{| align="center" cellspacing="6" width="90%"
+
{| align="center" cellspacing="8" width="90%"
|
|
<math>\begin{array}{lll}
<math>\begin{array}{lll}
−
P ~\text{is total at}~ X
+
L ~\text{is total at}~ X
& \iff &
& \iff &
−
P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
+
L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
\\[6pt]
\\[6pt]
−
P ~\text{is total at}~ Y
+
L ~\text{is total at}~ Y
& \iff &
& \iff &
−
P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
+
L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
\\[6pt]
\\[6pt]
−
P ~\text{is tubular at}~ X
+
L ~\text{is tubular at}~ X
& \iff &
& \iff &
−
P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
+
L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
\\[6pt]
\\[6pt]
−
P ~\text{is tubular at}~ Y
+
L ~\text{is tubular at}~ Y
& \iff &
& \iff &
−
P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
+
L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
\end{array}</math>
\end{array}</math>
|}
|}