MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
2 bytes added
, 19:54, 16 November 2012
Line 175: |
Line 175: |
| In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, a few of these definitions are recorded below. | | In a similar fashion, it is possible to define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, a few of these definitions are recorded below. |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | {| align="center" cellspacing="8" width="90%" |
| | | | | |
| <math>\begin{array}{lll} | | <math>\begin{array}{lll} |
Line 204: |
Line 204: |
| Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. | | Among the variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. |
| | | |
− | Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation. The following properties of <math>~P~</math> can be defined: | + | Let <math>L \subseteq X \times Y\!</math> be an arbitrary 2-adic relation. The following properties of <math>L\!</math> can be defined: |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | {| align="center" cellspacing="8" width="90%" |
| | | | | |
| <math>\begin{array}{lll} | | <math>\begin{array}{lll} |
− | P ~\text{is total at}~ X
| + | L ~\text{is total at}~ X |
| & \iff & | | & \iff & |
− | P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
| + | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X. |
| \\[6pt] | | \\[6pt] |
− | P ~\text{is total at}~ Y
| + | L ~\text{is total at}~ Y |
| & \iff & | | & \iff & |
− | P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
| + | L ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y. |
| \\[6pt] | | \\[6pt] |
− | P ~\text{is tubular at}~ X
| + | L ~\text{is tubular at}~ X |
| & \iff & | | & \iff & |
− | P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
| + | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X. |
| \\[6pt] | | \\[6pt] |
− | P ~\text{is tubular at}~ Y
| + | L ~\text{is tubular at}~ Y |
| & \iff & | | & \iff & |
− | P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
| + | L ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y. |
| \end{array}</math> | | \end{array}</math> |
| |} | | |} |