MyWikiBiz, Author Your Legacy — Wednesday November 27, 2024
Jump to navigationJump to search
209 bytes added
, 16:18, 14 November 2012
Line 8,293: |
Line 8,293: |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \operatorname{Pr}_{12}^{-1}(P) & = & P \times Z & = & \{ (x, y, z) \in X \times Y \times Z : (x, y) \in P \}. | | \operatorname{Pr}_{12}^{-1}(P) & = & P \times Z & = & \{ (x, y, z) \in X \times Y \times Z : (x, y) \in P \}. |
− | \\[6pt] | + | \\[4pt] |
| \operatorname{Pr}_{23}^{-1}(Q) & = & X \times Q & = & \{ (x, y, z) \in X \times Y \times Z : (y, z) \in Q \}. | | \operatorname{Pr}_{23}^{-1}(Q) & = & X \times Q & = & \{ (x, y, z) \in X \times Y \times Z : (y, z) \in Q \}. |
| \end{matrix}</math> | | \end{matrix}</math> |
Line 8,306: |
Line 8,306: |
| Regarded as logical models, the elements of the contension <math>P\!\!\And\!\!Q</math> satisfy the proposition referred to as the ''conjunction of extensions'' <math>P'\!</math> and <math>Q'.\!</math> | | Regarded as logical models, the elements of the contension <math>P\!\!\And\!\!Q</math> satisfy the proposition referred to as the ''conjunction of extensions'' <math>P'\!</math> and <math>Q'.\!</math> |
| | | |
− | <pre>
| + | Next, the ''composition'' of <math>P\!</math> and <math>Q\!</math> is a dyadic relation <math>R' \subseteq X \times Z\!</math> that is notated as <math>R' = P \circ Q\!</math> and defined as follows. |
− | Next, the "composition" of P and Q is a dyadic relation R' c XxZ that is notated as R' = P.Q and defined as follows: | |
| | | |
− | P.Q = Pr13(P&Q) = {<x, z> C XxZ : <x, y, z> C P&Q}. | + | {| align="center" cellspacing="8" width="90%" |
| + | | <math>P \circ Q ~=~ \operatorname{Pr}_{13} (P\!\!\And\!\!Q) ~=~ \{ (x, z) \in X \times Z : (x, y, z) \in P\!\!\And\!\!Q \}.</math> |
| + | |} |
| | | |
| + | <pre> |
| In other words: | | In other words: |
| | | |