MyWikiBiz, Author Your Legacy — Saturday November 30, 2024
Jump to navigationJump to search
12 bytes added
, 19:56, 7 October 2012
Line 7,374: |
Line 7,374: |
| ===6.33. Sign Relational Complexes=== | | ===6.33. Sign Relational Complexes=== |
| | | |
− | <pre>
| + | In a computational framework, indeed, in any constructively analytic and practically applied setting, the problem of working with insufficient information to fully determine one's object is a constant feature that goes with the territory of ''finite information constructions'' (FICs). The fineness of detail that is able to be specified by formal symbols is continually bedeviled by the frustrating truncations of every signal to a finite code and by the resistive constrictions of every intention to the restrictive confines of what can actually be conducted. Of course, one tries to get around the more finessible limitations, but the figurative extensions that one hopes to achieve by recourse to quasi-circular definitions and by reversion to parable and hyperbole — all of these tactics appeal to a pre-established aptness of reception on the part of interpreters that begs the very question of a determinate understanding and that risks falling short of the exact attitude needed for success. At any rate, the indirect strategy of approach relies on such large reserves of enthymeme to fuel its course that the grasp of a period to set bounds on its argument and fix a term to its conclusion is often found diverging in ways that both underreach and overreach its object, and well-founded or not the search for a generic method of definition typically ends so completely dumbfounded that it often trails off into the inescapable vacuity of a quasi terminal ellipsis … |
− | In a computational framework, indeed, in any constructively analytic and practically applied setting, the problem of working with insufficient information to fully determine one's object is a constant feature that goes with the territory of "finite information constructions" (FICs). The fineness of detail that is able to be specified by formal symbols is continually bedeviled by the frustrating truncations of every signal to a finite code and by the resistive constrictions of every intention to the restrictive confines of what can actually be conducted. Of course, one tries to get around the more finessible limitations, but the figurative extensions that one hopes to achieve by recourse to quasi circular definitions and by reversion to parable and hyperbole — all of these tactics appeal to a pre established aptness of reception on the part of interpreters that begs the very question of a determinate understanding and that risks falling short of the exact attitude needed for success. At any rate, the indirect strategy of approach relies on such large reserves of enthymeme to fuel its course that the grasp of a period to set bounds on its argument and fix a term to its conclusion is often found diverging in ways that both underreach and overreach its object, and well founded or not the search for a generic method of definition typically ends so completely dumbfounded that it often trails off into the inescapable vacuity of a quasi terminal ellipsis ... | |
| | | |
− | This section treats the problems of insufficient information and indeterminate objects under the heading of "partializations", using this as a briefer term for the information theoretic generalizations of the relevant object domains that take the use of indeterminate denotations, or partial determinations of objects, explicitly into account. | + | This section treats the problems of insufficient information and indeterminate objects under the heading of ''partializations'', using this as a briefer term for the information-theoretic generalizations of the relevant object domains that take the use of indeterminate denotations, or partial determinations of objects, explicitly into account. |
| | | |
− | In working with "partializations" or information theoretic generalizations of any subject matter, one has a choice between two options: | + | In working with ''partializations'' or information-theoretic generalizations of any subject matter, one has a choice between two options: |
| | | |
− | 1. Under the "object theoretic" alternative one views the "partiality" as something attaching to the objects of discussion. Consequently, one operates as if the problems distinctive of the extended subject matter were questions of managing ordinary information about a strange new breed of partial objects.
| + | # Under the ''object-theoretic'' alternative one views the partiality as something attaching to the objects of discussion. Consequently, one operates as if the problems distinctive of the extended subject matter were questions of managing ordinary information about a strange new breed of partial objects. |
− | | + | # Under the ''sign-theoretic'' alternative one takes the partiality as something affecting only the signs used in discussion. Accordingly, one approaches the task as a matter of handling partial information about ordinary objects, namely, the same domains of objects initially given at the outset of discussion. |
− | 2. Under the "sign theoretic" alternative one takes the "partiality" as something affecting only the signs used in discussion. Accordingly, one approaches the task as a matter of handling partial information about ordinary objects, namely, the same domains of objects initially given at the outset of discussion.
| |
| | | |
| + | <pre> |
| But a working maxim of information theory says that "Partial information is your ordinary information". Applied to the principle regulating the sign theoretic convention this means that the adjective "partial" is swallowed up by the substantive "information", so that the ostensibly more general case is always already subsumed within the ordinary case. Because partiality is part and parcel to the usual nature of information, it is a perfectly typical feature of the signs and expressions bearing it to provide normally only partial information about ordinary objects. | | But a working maxim of information theory says that "Partial information is your ordinary information". Applied to the principle regulating the sign theoretic convention this means that the adjective "partial" is swallowed up by the substantive "information", so that the ostensibly more general case is always already subsumed within the ordinary case. Because partiality is part and parcel to the usual nature of information, it is a perfectly typical feature of the signs and expressions bearing it to provide normally only partial information about ordinary objects. |
| | | |