| Line 79: |
Line 79: |
| | ==Logical disjunction== | | ==Logical disjunction== |
| | | | |
| − | ''[[Logical disjunction]]'', also called ''logical alternation'', is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are false. | + | '''[[Logical disjunction]]''', also called '''logical alternation''', is an operation on two logical values, typically the values of two propositions, that produces a value of ''false'' if and only if both of its operands are false. |
| | | | |
| − | The truth table of '''p OR q''' (also written as '''p ∨ q''') is as follows: | + | The truth table of <math>p ~\operatorname{OR}~ q,</math> also written <math>p \lor q,\!</math> appears below: |
| | | | |
| | <br> | | <br> |
| | | | |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%" |
| − | |+ '''Logical Disjunction''' | + | |+ style="height:30px" | <math>\text{Logical Disjunction}\!</math> |
| − | |- style="background:#e6e6ff" | + | |- style="height:40px; background:#f0f0ff" |
| − | ! style="width:15%" | p
| + | | style="width:33%" | <math>p\!</math> |
| − | ! style="width:15%" | q
| + | | style="width:33%" | <math>q\!</math> |
| − | ! style="width:15%" | p ∨ q
| + | | style="width:33%" | <math>p \lor q</math> |
| | |- | | |- |
| − | | F || F || F | + | | <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math> |
| | |- | | |- |
| − | | F || T || T | + | | <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| | |- | | |- |
| − | | T || F || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math> |
| | |- | | |- |
| − | | T || T || T | + | | <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math> |
| | |} | | |} |
| | | | |