Line 981: |
Line 981: |
| The multiplicative and additive versions of what is abstractly the same group, <math>Z_4,\!</math> can be used to illustrate the concept of a group isomorphism. | | The multiplicative and additive versions of what is abstractly the same group, <math>Z_4,\!</math> can be used to illustrate the concept of a group isomorphism. |
| | | |
− | <pre>
| + | Let the multiplicative version of <math>Z_4\!</math> be formalized as follows: |
− | Let the multiplicative version of Z4 be formalized as: | |
| | | |
− | Z4(.) = X1 = <X1, *1, e1> = <{1, a, b, c}, ., 1>,
| + | {| align="center" cellspacing="8" width="90%" |
| + | | <math>Z_4(\cdot) ~=~ \underline{X}_1 ~=~ (X_1, *_1, e_1) ~=~ ( \{1, a, b, c \}, \cdot, 1),\!</math> |
| + | |} |
| | | |
− | where "." denotes the operation in Table 34.1. | + | where <math>{}^{\backprime\backprime} \cdot {}^{\prime\prime}\!</math> denotes the operation in Table 34.1. |
| | | |
− | Let the additive version of Z4 be formalized as: | + | Let the additive version of <math>Z_4\!</math> be formalized as follows: |
| | | |
− | Z4(+) = X2 = <X2, *2, e2> = <{0, 1, 2, 3}, +, 0>,
| + | {| align="center" cellspacing="8" width="90%" |
| + | | <math>Z_4(+) ~=~ \underline{X}_2 ~=~ (X_2, *_2, e_2) ~=~ ( \{0, 1, 2, 3 \}, +, 0),\!</math> |
| + | |} |
| | | |
− | where "+" denotes the operation in Table 35.1. | + | where <math>{}^{\backprime\backprime} + {}^{\prime\prime}\!</math> denotes the operation in Table 35.1. |
| | | |
| + | <pre> |
| Then the mapping h : X1 >X2 whose ordered pairs are given by: | | Then the mapping h : X1 >X2 whose ordered pairs are given by: |
| | | |