Changes

Line 981: Line 981:  
The multiplicative and additive versions of what is abstractly the same group, <math>Z_4,\!</math> can be used to illustrate the concept of a group isomorphism.
 
The multiplicative and additive versions of what is abstractly the same group, <math>Z_4,\!</math> can be used to illustrate the concept of a group isomorphism.
   −
<pre>
+
Let the multiplicative version of <math>Z_4\!</math> be formalized as follows:
Let the multiplicative version of Z4 be formalized as:
     −
Z4(.) = X1  = <X1, *1, e1>  = <{1, a, b, c}, ., 1>,
+
{| align="center" cellspacing="8" width="90%"
 +
| <math>Z_4(\cdot) ~=~ \underline{X}_1 ~=~ (X_1, *_1, e_1) ~=~ ( \{1, a, b, c \}, \cdot, 1),\!</math>
 +
|}
   −
where "." denotes the operation in Table 34.1.
+
where <math>{}^{\backprime\backprime} \cdot {}^{\prime\prime}\!</math> denotes the operation in Table&nbsp;34.1.
   −
Let the additive version of Z4 be formalized as:
+
Let the additive version of <math>Z_4\!</math> be formalized as follows:
   −
Z4(+) = X2  = <X2, *2, e2>  = <{0, 1, 2, 3}, +, 0>,
+
{| align="center" cellspacing="8" width="90%"
 +
| <math>Z_4(+) ~=~ \underline{X}_2 ~=~ (X_2, *_2, e_2) ~=~ ( \{0, 1, 2, 3 \}, +, 0),\!</math>
 +
|}
   −
where "+" denotes the operation in Table 35.1.
+
where <math>{}^{\backprime\backprime} + {}^{\prime\prime}\!</math> denotes the operation in Table&nbsp;35.1.
    +
<pre>
 
Then the mapping h : X1 >X2 whose ordered pairs are given by:
 
Then the mapping h : X1 >X2 whose ordered pairs are given by:
  
12,089

edits