Changes

MyWikiBiz, Author Your Legacy — Monday September 22, 2025
Jump to navigationJump to search
Line 898: Line 898:     
Finally, to introduce two pieces of language that are often useful:  an '''endomorphism''' is a homomorphism from a system into itself, while an '''automorphism''' is an isomorphism from a system onto itself.
 
Finally, to introduce two pieces of language that are often useful:  an '''endomorphism''' is a homomorphism from a system into itself, while an '''automorphism''' is an isomorphism from a system onto itself.
 +
 +
If nothing more succinct is available, a group can be specified by means of its ''operation table'', usually styled either as a ''multiplication table'' or an ''addition table''.  Table&nbsp;32.1 illustrates the general scheme of a group operation table.  In this case the group operation, treated as a &ldquo;multiplication&rdquo;, is formally symbolized by a star <math>(*),\!</math> as in <math>x * y = z.\!</math>  In contexts where only algebraic operations are formalized it is common practice to omit the star, but when logical conjunctions (symbolized by a raised dot <math>(\cdot)\!</math> or by concatenation) appear in the same context, then the star is retained for the group operation.
    
<pre>
 
<pre>
If nothing more succinct is available, a group can be specified by means of its "operation table", usually styled either as an "addition table" or as a "multiplication table".  Table 32.1 illustrates the general scheme of a group operation table.  In this case the group operation, treated as a "multiplication", is formally symbolized by a star "*", as in x*y = z.  In contexts where only algebraic operations are formalized it is common practice to omit the star, but when logical conjunctions (symbolized by a raised dot "." or by concatenation) appear in the same context, then the star is retained for the group operation.
  −
   
Another way of approaching the study or presenting the structure of a group is by means of a "group representation", in particular, one that represents the group in the special form of a "transformation group".  This is a set of transformations acting on a concrete space of "points" or a designated set of "objects".  In providing an abstractly given group with a representation as a transformation group, one is seeking to know the group by its effects, that is, in terms of the action it induces, through the representation, on a concrete domain of objects.  In the type of representation known as a "regular representation", one is seeking to know the group by its effects on itself.
 
Another way of approaching the study or presenting the structure of a group is by means of a "group representation", in particular, one that represents the group in the special form of a "transformation group".  This is a set of transformations acting on a concrete space of "points" or a designated set of "objects".  In providing an abstractly given group with a representation as a transformation group, one is seeking to know the group by its effects, that is, in terms of the action it induces, through the representation, on a concrete domain of objects.  In the type of representation known as a "regular representation", one is seeking to know the group by its effects on itself.
  
12,089

edits

Navigation menu