Line 5:
Line 5:
If the list of arguments is empty, as expressed in the form <math>\texttt{Mno}(),</math> then it cannot be true that exactly one of the arguments is false, so <math>\texttt{Mno}() = \texttt{False}.</math>
If the list of arguments is empty, as expressed in the form <math>\texttt{Mno}(),</math> then it cannot be true that exactly one of the arguments is false, so <math>\texttt{Mno}() = \texttt{False}.</math>
−
If p is the only argument, then Mno(p) says that p is false, so Mno(p) = Not(p).
+
If <math>\texttt{p}</math> is the only argument, then <math>\texttt{Mno(p)}</math> says that <math>\texttt{p}</math> is false, so <math>\texttt{Mno(p)} = \texttt{Not(p)}.</math>
−
If p and q are the only two arguments, then Mno(p, q) says that exactly one of p, q is false, so Mno(p, q) says the same thing as p ≠ q.
+
If <math>\texttt{p}</math> and <math>\texttt{q}</math> are the only two arguments, then <math>\texttt{Mno(p, q)}</math> says that exactly one of <math>\texttt{p, q}</math> is false, so <math>\texttt{Mno(p, q)}</math> says the same thing as <math>\texttt{p} \neq \texttt{q}.</math>
−
The venn diagram for Mno(p, q, r) is shown in Figure 1.
+
The venn diagram for <math>\texttt{Mno(p, q, r)}</math> is shown in Figure 1.
{| align="center" cellpadding="8" style="text-align:center"
{| align="center" cellpadding="8" style="text-align:center"
|
|
<p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p>
<p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p>
−
<p><math>\text{Figure 1.}~~\texttt{(p, q, r)}</math></p>
+
<p><math>\text{Figure 1.}~~\texttt{Mno(p, q, r)}</math></p>
|}
|}