Line 1:
Line 1:
<font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
<font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
+
+
A '''minimal negation operator''' (Mno) is a logical connective that says “just one false” of its logical arguments.
+
+
If the list of arguments is empty, as expressed in the form Mno(), then it cannot be true that exactly one of the arguments is false, so Mno() = False.
+
+
If p is the only argument, then Mno(p) says that p is false, so Mno(p) = Not(p).
+
+
If p and q are the only two arguments, then Mno(p, q) says that exactly one of p, q is false, so Mno(p, q) says the same thing as p ≠ q.
+
+
The venn diagram for Mno(p, q, r) is shown in Figure 1.
+
+
{| align="center" cellpadding="8" style="text-align:center"
+
|
+
<p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p>
+
<p><math>\text{Figure 1.}~~\texttt{(p, q, r)}</math></p>
+
|}
+
+
The center cell is the region where all three arguments p, q, r hold true, so Mno(p, q, r) holds true in just the three neighboring cells. In other words, Mno(p, q, r) = ¬p q r ∨ p ¬q r ∨ p q ¬r.
+
+
==Initial definition==
The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math>
The '''minimal negation operator''' <math>\nu\!</math> is a [[multigrade operator]] <math>(\nu_k)_{k \in \mathbb{N}}</math> where each <math>\nu_k\!</math> is a <math>k\!</math>-ary [[boolean function]] defined in such a way that <math>\nu_k (x_1, \ldots , x_k) = 1</math> in just those cases where exactly one of the arguments <math>x_j\!</math> is <math>0.\!</math>
Line 32:
Line 52:
|}
|}
−
==Definition==
+
==Formal definition==
To express the general case of <math>\nu_k\!</math> in terms of familiar operations, it helps to introduce an intermediary concept:
To express the general case of <math>\nu_k\!</math> in terms of familiar operations, it helps to introduce an intermediary concept:
Line 78:
Line 98:
==Truth tables==
==Truth tables==
−
Table 1 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries.
+
Table 2 is a [[truth table]] for the sixteen boolean functions of type <math>f : \mathbb{B}^3 \to \mathbb{B}</math> whose fibers of 1 are either the boundaries of points in <math>\mathbb{B}^3</math> or the complements of those boundaries.
<br>
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
−
|+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math>
+
|+ <math>\text{Table 2.}~~\text{Logical Boundaries and Their Complements}</math>
|- style="background:#f0f0ff"
|- style="background:#f0f0ff"
| <math>\mathcal{L}_1</math>
| <math>\mathcal{L}_1</math>
Line 285:
Line 305:
|
|
<p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p>
<p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p>
−
<p><math>\text{Figure 2.}~~\texttt{(p, q, r)}</math></p>
+
<p><math>\text{Figure 3.}~~\texttt{(p, q, r)}</math></p>
|}
|}
Line 293:
Line 313:
|
|
<p>[[Image:Venn Diagram ((P),(Q),(R)).jpg|500px]]</p>
<p>[[Image:Venn Diagram ((P),(Q),(R)).jpg|500px]]</p>
−
<p><math>\text{Figure 3.}~~\texttt{((p),(q),(r))}</math></p>
+
<p><math>\text{Figure 4.}~~\texttt{((p),(q),(r))}</math></p>
|}
|}