MyWikiBiz, Author Your Legacy — Wednesday November 05, 2025
Jump to navigationJump to search
691 bytes added
, 04:20, 17 December 2010
| Line 280: |
Line 280: |
| | {| align="center" width="90%" | | {| align="center" width="90%" |
| | | | | | |
| − | <p>The formula of analogy is as follows: <math>S^{\prime}, S^{\prime\prime}, S^{\prime\prime\prime}</math> are taken at random from such a class that their characters at random are such as <math>P^{\prime}, P^{\prime\prime}, P^{\prime\prime\prime}.</math></p> | + | <p>The formula of analogy is as follows: <math>S^{\prime}, S^{\prime\prime}, ~\operatorname{and}~ S^{\prime\prime\prime}</math> are taken at random from such a class that their characters at random are such as <math>P^{\prime}, P^{\prime\prime}, P^{\prime\prime\prime}.</math></p> |
| − | | + | |- |
| | + | | |
| | <center> | | <center> |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | t ~\operatorname{is}~ P^{\prime}, P^{\prime\prime}, P^{\prime\prime\prime}, | + | t ~\operatorname{is}~ P^{\prime}, P^{\prime\prime}, ~\operatorname{and}~ P^{\prime\prime\prime}, |
| | \\[4pt] | | \\[4pt] |
| − | S^{\prime}, S^{\prime\prime}, S^{\prime\prime\prime} ~\operatorname{are}~ q; | + | S^{\prime}, S^{\prime\prime}, ~\operatorname{and}~ S^{\prime\prime\prime} ~\operatorname{are}~ q; |
| | \\[4pt] | | \\[4pt] |
| | \therefore t ~\operatorname{is}~ q. | | \therefore t ~\operatorname{is}~ q. |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | </center> | | </center> |
| − | | + | |- |
| − | <p>Such an argument is double. It combines the two following: | + | | <p>Such an argument is double. It combines the two following: |
| − | | + | |- |
| | + | | |
| | <center> | | <center> |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| Line 309: |
Line 311: |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | </center> | | </center> |
| − | | + | |- |
| | + | | |
| | + | <center> |
| | + | <math>\begin{matrix} |
| | + | 2. |
| | + | \\[4pt] |
| | + | S^{\prime}, S^{\prime\prime}, S^{\prime\prime\prime} ~\operatorname{are,~for~instance,}~ P^{\prime}, P^{\prime\prime}, P^{\prime\prime\prime}, |
| | + | \\[4pt] |
| | + | t ~\operatorname{is}~ P^{\prime}, P^{\prime\prime}, P^{\prime\prime\prime}; |
| | + | \\[4pt] |
| | + | \therefore ~(\operatorname{By~hypothesis})~ t ~\operatorname{has~the~common~characters~of}~ S^{\prime}, S^{\prime\prime}, S^{\prime\prime\prime}, |
| | + | \\[4pt] |
| | + | S^{\prime}, S^{\prime\prime}, S^{\prime\prime\prime} ~\operatorname{are}~ q; |
| | + | \\[4pt] |
| | + | \therefore ~(\operatorname{Deductively})~ t ~\operatorname{is}~ q. |
| | + | \end{matrix}</math> |
| | + | </center> |
| | |} | | |} |
| | | | |