Changes

MyWikiBiz, Author Your Legacy — Saturday September 28, 2024
Jump to navigationJump to search
→‎1.3.4.13. Formalization of OF : Objective Levels: change white space formatting in TeX
Line 881: Line 881:  
One way to approach the formalization of an objective genre <math>G\!</math> is through an indexed collection of dyadic relations:
 
One way to approach the formalization of an objective genre <math>G\!</math> is through an indexed collection of dyadic relations:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>G = \{ G_j \} = \{ G_j : j \in J \} ~\text{with}~ G_j \subseteq P_j \times Q_j ~ (\forall j \in J)</math>.
 
| <math>G = \{ G_j \} = \{ G_j : j \in J \} ~\text{with}~ G_j \subseteq P_j \times Q_j ~ (\forall j \in J)</math>.
 
|}
 
|}
Line 891: Line 891:  
Ordinarily, it is desirable to avoid making individual mention of the separately indexed domains, <math>P_j\!</math> and <math>Q_j\!</math> for all <math>j\!</math> in <math>J\!</math>.  Common strategies for getting around this trouble involve the introduction of additional domains, designed to encompass all the objects needed in given contexts.  Toward this end, an adequate supply of intermediate domains, called the ''rudiments of universal mediation'', can be defined as follows:
 
Ordinarily, it is desirable to avoid making individual mention of the separately indexed domains, <math>P_j\!</math> and <math>Q_j\!</math> for all <math>j\!</math> in <math>J\!</math>.  Common strategies for getting around this trouble involve the introduction of additional domains, designed to encompass all the objects needed in given contexts.  Toward this end, an adequate supply of intermediate domains, called the ''rudiments of universal mediation'', can be defined as follows:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>X_j = P_j \cup Q_j</math>,
 
| <math>X_j = P_j \cup Q_j</math>,
 
| <math>P = \textstyle \bigcup_j P_j</math>,
 
| <math>P = \textstyle \bigcup_j P_j</math>,
Line 945: Line 945:  
The last and perhaps the best way to form an objective genre <math>G\!</math> is to present it as a triadic relation:
 
The last and perhaps the best way to form an objective genre <math>G\!</math> is to present it as a triadic relation:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>G = \{ (j, p, q) \} \subseteq J \times P \times Q</math>,
 
| <math>G = \{ (j, p, q) \} \subseteq J \times P \times Q</math>,
 
|}
 
|}
Line 951: Line 951:  
or:
 
or:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>G = \{ (j, x, y) \} \subseteq J \times X \times X</math>.
 
| <math>G = \{ (j, x, y) \} \subseteq J \times X \times X</math>.
 
|}
 
|}
Line 959: Line 959:  
There is a ''partial converse'' of the standing relation that transposes the order in which the two object domains are mentioned.  This is called the ''propping relation'' of the genre, and it can be taken as an alternate way of defining the genre.
 
There is a ''partial converse'' of the standing relation that transposes the order in which the two object domains are mentioned.  This is called the ''propping relation'' of the genre, and it can be taken as an alternate way of defining the genre.
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>G\!\uparrow ~=~ \{ (j, q, p) \in J \times Q \times P : (j, p, q) \in G \}</math>,
 
| <math>G\!\uparrow ~=~ \{ (j, q, p) \in J \times Q \times P : (j, p, q) \in G \}</math>,
 
|}
 
|}
Line 965: Line 965:  
or:
 
or:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>G\!\uparrow ~=~ \{ (j, y, x) \in J \times X \times X : (j, x, y) \in G \}</math>.
 
| <math>G\!\uparrow ~=~ \{ (j, y, x) \in J \times X \times X : (j, x, y) \in G \}</math>.
 
|}
 
|}
Line 973: Line 973:  
The standing relation of a genre is denoted by the symbol <math>:\!\lessdot</math>, pronounced ''set-in'', with either of the following two type-markings:
 
The standing relation of a genre is denoted by the symbol <math>:\!\lessdot</math>, pronounced ''set-in'', with either of the following two type-markings:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>:\!\lessdot ~\subseteq~ J \times P \times Q</math>,
 
| <math>:\!\lessdot ~\subseteq~ J \times P \times Q</math>,
 
|-
 
|-
Line 981: Line 981:  
The propping relation of a genre is denoted by the symbol <math>:\!\gtrdot</math>, pronounced ''set-on'', with either of the following two type-markings:
 
The propping relation of a genre is denoted by the symbol <math>:\!\gtrdot</math>, pronounced ''set-on'', with either of the following two type-markings:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>:\!\gtrdot ~\subseteq~ J \times Q \times P</math>,
 
| <math>:\!\gtrdot ~\subseteq~ J \times Q \times P</math>,
 
|-
 
|-
Line 989: Line 989:  
Often one's level of interest in a genre is ''purely generic''.  When the relevant genre is regarded as an indexed family of dyadic relations, <math>G = \{ G_j \}\!</math>, then this generic interest is tantamount to having one's concern rest with the union of all the dyadic relations in the genre.
 
Often one's level of interest in a genre is ''purely generic''.  When the relevant genre is regarded as an indexed family of dyadic relations, <math>G = \{ G_j \}\!</math>, then this generic interest is tantamount to having one's concern rest with the union of all the dyadic relations in the genre.
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>\textstyle \bigcup_J G = \textstyle \bigcup_j G_j = \{ (x, y) \in X \times X : (x, y) \in G_j ~ (\exists j \in J) \}</math>.
 
| <math>\textstyle \bigcup_J G = \textstyle \bigcup_j G_j = \{ (x, y) \in X \times X : (x, y) \in G_j ~ (\exists j \in J) \}</math>.
 
|}
 
|}
Line 995: Line 995:  
When the relevant genre is contemplated as a triadic relation, <math>G \subseteq J \times X \times X</math>, then one is dealing with the projection of <math>G\!</math> on the object dyad <math>X \times X</math>.
 
When the relevant genre is contemplated as a triadic relation, <math>G \subseteq J \times X \times X</math>, then one is dealing with the projection of <math>G\!</math> on the object dyad <math>X \times X</math>.
   −
{| align="center" cellpadding="10"
+
{| align="center" cellpadding="8"
 
| <math>G_{XX} = \operatorname{proj}_{XX}(G) = \{ (x, y) \in X \times X : (j, x, y) \in G ~ (\exists j \in J) \}</math>.
 
| <math>G_{XX} = \operatorname{proj}_{XX}(G) = \{ (x, y) \in X \times X : (j, x, y) \in G ~ (\exists j \in J) \}</math>.
 
|}
 
|}
Line 1,001: Line 1,001:  
On these occasions, the assertion that <math>(x, y)\!</math> is in <math>\cup_J G = G_{XX}</math> can be indicated by any one of the following equivalent expressions:
 
On these occasions, the assertion that <math>(x, y)\!</math> is in <math>\cup_J G = G_{XX}</math> can be indicated by any one of the following equivalent expressions:
   −
{| align="center" cellpadding="10" style="text-align:center; width:75%"
+
{| align="center" cellpadding="8" style="text-align:center; width:75%"
 
| <math>G : x \lessdot y</math>,
 
| <math>G : x \lessdot y</math>,
 
| <math>x \lessdot_G y</math>,
 
| <math>x \lessdot_G y</math>,
Line 1,013: Line 1,013:  
At other times explicit mention needs to be made of the ''interpretive perspective'' or ''individual dyadic relation'' that links two objects.  To indicate that a triple consisting of a motive <math>j\!</math> and two objects <math>x\!</math> and <math>y\!</math> belongs to the standing relation of the genre, in symbols, <math>(j, x, y) \in ~ :\!\lessdot</math>, or equally, to indicate that a triple consisting of a motive <math>j\!</math> and two objects <math>y\!</math> and <math>x\!</math> belongs to the propping relation of the genre, in symbols, <math>(j, y, x) \in ~ :\!\gtrdot</math>, all of the following notations are equivalent:
 
At other times explicit mention needs to be made of the ''interpretive perspective'' or ''individual dyadic relation'' that links two objects.  To indicate that a triple consisting of a motive <math>j\!</math> and two objects <math>x\!</math> and <math>y\!</math> belongs to the standing relation of the genre, in symbols, <math>(j, x, y) \in ~ :\!\lessdot</math>, or equally, to indicate that a triple consisting of a motive <math>j\!</math> and two objects <math>y\!</math> and <math>x\!</math> belongs to the propping relation of the genre, in symbols, <math>(j, y, x) \in ~ :\!\gtrdot</math>, all of the following notations are equivalent:
   −
{| align="center" cellpadding="10" style="text-align:center; width:75%"
+
{| align="center" cellpadding="8" style="text-align:center; width:75%"
 
| <math>j : x \lessdot y</math>,
 
| <math>j : x \lessdot y</math>,
 
| <math>x \lessdot_j y</math>,
 
| <math>x \lessdot_j y</math>,
Line 1,026: Line 1,026:     
<br>
 
<br>
 +
 
{| align="center" border="1" cellpadding="4" cellspacing="2" style="text-align:left; width:100%"
 
{| align="center" border="1" cellpadding="4" cellspacing="2" style="text-align:left; width:100%"
 
|
 
|
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:ghostwhite; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:#f0f0ff; text-align:left; width:100%"
 
|-
 
|-
 
| width="50%" | <math>j : x \lessdot y</math>
 
| width="50%" | <math>j : x \lessdot y</math>
Line 1,042: Line 1,043:  
|
 
|
 
{| align="center" border="0" cellpadding="4" cellspacing="0" style="text-align:left; width:100%"
 
{| align="center" border="0" cellpadding="4" cellspacing="0" style="text-align:left; width:100%"
| width="50%" | <math>j\ \text{sets}\ x\ \text{in}\ y.</math>
+
| width="50%" | <math>j ~\text{sets}~ x ~\text{in}~ y.</math>
| width="50%" | <math>j\ \text{sets}\ y\ \text{on}\ x.</math>
+
| width="50%" | <math>j ~\text{sets}~ y ~\text{on}~ x.</math>
 
|-
 
|-
| <math>j\ \text{makes}\ x\ \text{an instance of}\ y.</math>
+
| <math>j ~\text{makes}~ x ~\text{an instance of}~ y.</math>
| <math>j\ \text{makes}\ y\ \text{a property of}\ x.</math>
+
| <math>j ~\text{makes}~ y ~\text{a property of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{thinks}\ x\ \text{an instance of}\ y.</math>
+
| <math>j ~\text{thinks}~ x ~\text{an instance of}~ y.</math>
| <math>j\ \text{thinks}\ y\ \text{a property of}\ x.</math>
+
| <math>j ~\text{thinks}~ y ~\text{a property of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{attests}\ x\ \text{an instance of}\ y.</math>
+
| <math>j ~\text{attests}~ x ~\text{an instance of}~ y.</math>
| <math>j\ \text{attests}\ y\ \text{a property of}\ x.</math>
+
| <math>j ~\text{attests}~ y ~\text{a property of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{appoints}\ x\ \text{an instance of}\ y.</math>
+
| <math>j ~\text{appoints}~ x ~\text{an instance of}~ y.</math>
| <math>j\ \text{appoints}\ y\ \text{a property of}\ x.</math>
+
| <math>j ~\text{appoints}~ y ~\text{a property of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{witnesses}\ x\ \text{an instance of}\ y.</math>
+
| <math>j ~\text{witnesses}~ x ~\text{an instance of}~ y.</math>
| <math>j\ \text{witnesses}\ y\ \text{a property of}\ x.</math>
+
| <math>j ~\text{witnesses}~ y ~\text{a property of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{interprets}\ x\ \text{an instance of}\ y.</math>
+
| <math>j ~\text{interprets}~ x ~\text{an instance of}~ y.</math>
| <math>j\ \text{interprets}\ y\ \text{a property of}\ x.</math>
+
| <math>j ~\text{interprets}~ y ~\text{a property of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{contributes}\ x\ \text{to}\ y.</math>
+
| <math>j ~\text{contributes}~ x ~\text{to}~ y.</math>
| <math>j\ \text{attributes}\ y\ \text{to}\ x.</math>
+
| <math>j ~\text{attributes}~ y ~\text{to}~ x.</math>
 
|-
 
|-
| <math>j\ \text{determines}\ x\ \text{an example of}\ y.</math>
+
| <math>j ~\text{determines}~ x ~\text{an example of}~ y.</math>
| <math>j\ \text{determines}\ y\ \text{a quality of}\ x.</math>
+
| <math>j ~\text{determines}~ y ~\text{a quality of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{evaluates}\ x\ \text{an example of}\ y.</math>
+
| <math>j ~\text{evaluates}~ x ~\text{an example of}~ y.</math>
| <math>j\ \text{evaluates}\ y\ \text{a quality of}\ x.</math>
+
| <math>j ~\text{evaluates}~ y ~\text{a quality of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{proposes}\ x\ \text{an example of}\ y.</math>
+
| <math>j ~\text{proposes}~ x ~\text{an example of}~ y.</math>
| <math>j\ \text{proposes}\ y\ \text{a quality of}\ x.</math>
+
| <math>j ~\text{proposes}~ y ~\text{a quality of}~ x.</math>
 
|-
 
|-
| <math>j\ \text{musters}\ x\ \text{under}\ y.</math>
+
| <math>j ~\text{musters}~ x ~\text{under}~ y.</math>
| <math>j\ \text{marshals}\ y\ \text{over}\ x.</math>
+
| <math>j ~\text{marshals}~ y ~\text{over}~ x.</math>
 
|-
 
|-
| <math>j\ \text{indites}\ x\ \text{among}\ y.</math>
+
| <math>j ~\text{indites}~ x ~\text{among}~ y.</math>
| <math>j\ \text{ascribes}\ y\ \text{about}\ x.</math>
+
| <math>j ~\text{ascribes}~ y ~\text{about}~ x.</math>
 
|-
 
|-
| <math>j\ \text{imputes}\ x\ \text{among}\ y.</math>
+
| <math>j ~\text{imputes}~ x ~\text{among}~ y.</math>
| <math>j\ \text{imputes}\ y\ \text{about}\ x.</math>
+
| <math>j ~\text{imputes}~ y ~\text{about}~ x.</math>
 
|-
 
|-
| <math>j\ \text{judges}\ x\ \text{beneath}\ y.</math>
+
| <math>j ~\text{judges}~ x ~\text{beneath}~ y.</math>
| <math>j\ \text{judges}\ y\ \text{beyond}\ x.</math>
+
| <math>j ~\text{judges}~ y ~\text{beyond}~ x.</math>
 
|-
 
|-
| <math>j\ \text{finds}\ x\ \text{preceding}\ y.</math>
+
| <math>j ~\text{finds}~ x ~\text{preceding}~ y.</math>
| <math>j\ \text{finds}\ y\ \text{succeeding}\ x.</math>
+
| <math>j ~\text{finds}~ y ~\text{succeeding}~ x.</math>
 
|-
 
|-
| <math>j\ \text{poses}\ x\ \text{before}\ y.</math>
+
| <math>j ~\text{poses}~ x ~\text{before}~ y.</math>
| <math>j\ \text{poses}\ y\ \text{after}\ x.</math>
+
| <math>j ~\text{poses}~ y ~\text{after}~ x.</math>
 
|-
 
|-
| <math>j\ \text{forms}\ x\ \text{below}\ y.</math>
+
| <math>j ~\text{forms}~ x ~\text{below}~ y.</math>
| <math>j\ \text{forms}\ y\ \text{above}\ x.</math>
+
| <math>j ~\text{forms}~ y ~\text{above}~ x.</math>
 
|}
 
|}
 
|}
 
|}
 +
 
<br>
 
<br>
  
12,080

edits

Navigation menu