MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
2,939 bytes removed
, 18:14, 10 September 2010
Line 668: |
Line 668: |
| | | |
| =====1.3.12.2. Derived Equivalence Relations===== | | =====1.3.12.2. Derived Equivalence Relations===== |
− |
| |
− | The relation Der(R) is defined and the notation "x =R y" is meaningful in every situation where Den(-,-) makes sense, but it remains to check whether this relation enjoys the properties of an equivalence relation.
| |
− |
| |
− | # Reflexive property. Is it true that x =R x for every x C S = I? By definition, x =R x if and only if Den(R, x) = Den(R, x). Thus, the reflexive property holds in any setting where the denotations Den(R, x) are defined for all signs x in the syntactic domain of R.
| |
− | # Symmetric property. Does x =R y => y =R x for all x, y C S? In effect, does Den(R, x) = Den(R, y) imply Den(R, y) = Den(R, x) for all signs x and y in the syntactic domain S? Yes, so long as the sets Den(R, x) and Den(R, y) are well-defined, a fact which is already being assumed.
| |
− | # Transitive property. Does x =R y & y =R z => x =R z for all x, y, z C S? To belabor the point, does Den(R, x) = Den(R, y) and Den(R, y) = Den(R, z) imply Den(R, x) = Den(R, z) for all x, y, z in S? Yes, again, under the stated conditions.
| |
− |
| |
− | It should be clear at this point that any question about the equiference of signs reduces to a question about the equality of sets, specifically, the sets that are indexed by these signs. As a result, so long as these sets are well-defined, the issue of whether equiference relations induce equivalence relations on their syntactic domains is almost as trivial as it initially appears.
| |
− |
| |
− | Taken in its set-theoretic extension, a relation of equiference induces a "denotative equivalence relation" (DER) on its syntactic domain S = I. This leads to the formation of "denotative equivalence classes" (DEC's), "denotative partitions" (DEP's), and "denotative equations" (DEQ's) on the syntactic domain. But what does it mean for signs to be equiferent?
| |
− |
| |
− | Notice that this is not the same thing as being "semiotically equivalent", in the sense of belonging to a single "semiotic equivalence class" (SEC), falling into the same part of a "semiotic partition" (SEP), or having a "semiotic equation" (SEQ) between them. It is only when very felicitous conditions obtain, establishing a concord between the denotative and the connotative components of a sign relation, that these two ideas coalesce.
| |
− |
| |
− | In general, there is no necessity that the equiference of signs, that is, their denotational equivalence or their referential equivalence, induces the same equivalence relation on the syntactic domain as that defined by their semiotic equivalence, even though this state of accord seems like an especially desirable situation. This makes it necessary to find a distinctive nomenclature for these structures, for which I adopt the term "denotative equivalence relations" (DER's). In their train they bring the allied structures of "denotative equivalence classes" (DEC's) and "denotative partitions" (DEP's), while the corresponding statements of "denotative equations" (DEQ's) are expressible in the form "x =R y".
| |
| | | |
| The uses of the equal sign for denoting equations or equivalences are recalled and extended in the following ways: | | The uses of the equal sign for denoting equations or equivalences are recalled and extended in the following ways: |