Line 4: |
Line 4: |
| ==Idea== | | ==Idea== |
| | | |
− | Let <math>\text{p}_i</math> be the <math>i^\text{th}</math> prime, where the positive integer <math>i</math> is called the ''index'' of the prime <math>\text{p}_i</math> and the indices are taken in such a way that <math>\text{p}_1 = 2.</math> Thus the sequence of primes begins as follows: | + | Let <math>\text{p}_i\!</math> be the <math>i^\text{th}\!</math> prime, where the positive integer <math>i\!</math> is called the ''index'' of the prime <math>\text{p}_i\!</math> and the indices are taken in such a way that <math>\text{p}_1 = 2.\!</math> Thus the sequence of primes begins as follows: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 21: |
Line 21: |
| |} | | |} |
| | | |
− | The prime factorization of a positive integer <math>n</math> can be written in the following form: | + | The prime factorization of a positive integer <math>n\!</math> can be written in the following form: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | <math>n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},</math> | + | | <math>n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\!</math> |
| |} | | |} |
| | | |
− | where <math>\text{p}_{i(k)}^{j(k)}</math> is the <math>k^\text{th}</math> prime power in the factorization and <math>\ell</math> is the number of distinct prime factors dividing <math>n.</math> The factorization of <math>1</math> is defined as <math>1</math> in accord with the convention that an empty product is equal to <math>1.</math> | + | where <math>\text{p}_{i(k)}^{j(k)}\!</math> is the <math>k^\text{th}\!</math> prime power in the factorization and <math>\ell\!</math> is the number of distinct prime factors dividing <math>n.\!</math> The factorization of <math>1\!</math> is defined as <math>1\!</math> in accord with the convention that an empty product is equal to <math>1.\!</math> |
| | | |
− | Let <math>I(n)</math> be the set of indices of primes that divide <math>n</math> and let <math>j(i, n)</math> be the number of times that <math>\text{p}_i</math> divides <math>n.</math> Then the prime factorization of <math>n</math> can be written in the following alternative form: | + | Let <math>I(n)\!</math> be the set of indices of primes that divide <math>n\!</math> and let <math>j(i, n)\!</math> be the number of times that <math>\text{p}_i\!</math> divides <math>n.\!</math> Then the prime factorization of <math>n\!</math> can be written in the following alternative form: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | <math>n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.</math> | + | | <math>n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\!</math> |
| |} | | |} |
| | | |
Line 46: |
Line 46: |
| |} | | |} |
| | | |
− | Each index <math>i</math> and exponent <math>j</math> appearing in the prime factorization of a positive integer <math>n</math> is itself a positive integer, and thus has a prime factorization of its own. | + | Each index <math>i\!</math> and exponent <math>j\!</math> appearing in the prime factorization of a positive integer <math>n\!</math> is itself a positive integer, and thus has a prime factorization of its own. |
| | | |
− | Continuing with the same example, the index <math>504</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1</math> and the index <math>529</math> has the factorization <math>{23}^2 = \text{p}_9^2.</math> Taking this information together with previously known factorizations allows the following replacements to be made in the above expression: | + | Continuing with the same example, the index <math>504\!</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!</math> and the index <math>529\!</math> has the factorization <math>{23}^2 = \text{p}_9^2.\!</math> Taking this information together with previously known factorizations allows the following replacements to be made in the above expression: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 89: |
Line 89: |
| |} | | |} |
| | | |
− | The <math>1</math>'s that appear as indices and exponents are formally redundant, conveying no information apart from the places they occupy in the resulting syntactic structure. Leaving them tacit produces the following expression: | + | The <math>1\!</math>'s that appear as indices and exponents are formally redundant, conveying no information apart from the places they occupy in the resulting syntactic structure. Leaving them tacit produces the following expression: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 99: |
Line 99: |
| |} | | |} |
| | | |
− | Applying the same procedure to any positive integer <math>n</math> produces an expression called the ''doubly recursive factorization'' of <math>n</math> and notated as <math>\operatorname{drf}(n).</math> | + | Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the ''doubly recursive factorization'' of <math>n\!</math> and notated as <math>\operatorname{drf}(n).\!</math> |
| | | |
| {| align=center cellpadding="6" | | {| align=center cellpadding="6" |