Line 456: |
Line 456: |
| | | |
| ==Selected Sequences== | | ==Selected Sequences== |
| + | |
| + | {| align="center" border="1" width="90%" |
| + | |+ style="height:25px" | <math>\text{Prime Factorizations, Riffs, and Rotes}\!</math> |
| + | |- style="height:50px; background:#f0f0ff" |
| + | | |
| + | {| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%" |
| + | | width="10%" | <math>\text{Integer}\!</math> |
| + | | width="25%" | <math>\text{Factorization}\!</math> |
| + | | width="15%" | <math>\text{Notation}\!</math> |
| + | | width="25%" | <math>\text{Riff Digraph}\!</math> |
| + | | width="25%" | <math>\text{Rote Graph}\!</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="12" style="text-align:center; width:100%" |
| + | | width="10%" | <math>1\!</math> |
| + | | width="25%" | <math>1\!</math> |
| + | | width="15%" | |
| + | | width="25%" | |
| + | | width="25%" | [[Image:Rote 1 Big.jpg|20px]] |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="12" style="text-align:center; width:100%" |
| + | | width="10%" | <math>2\!</math> |
| + | | width="25%" | <math>\text{p}_1^1\!</math> |
| + | | width="15%" | <math>\text{p}\!</math> |
| + | | width="25%" | [[Image:Riff 2 Big.jpg|20px]] |
| + | | width="25%" | [[Image:Rote 2 Big.jpg|40px]] |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="12" style="text-align:center; width:100%" |
| + | | width="10%" | <math>3\!</math> |
| + | | width="25%" | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1 |
| + | \end{array}</math> |
| + | | width="15%" | <math>\text{p}_\text{p}\!</math> |
| + | | width="25%" | [[Image:Riff 3 Big.jpg|40px]] |
| + | | width="25%" | [[Image:Rote 3 Big.jpg|40px]] |
| + | |- |
| + | | <math>4\!</math> |
| + | | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_1^2 & = & \text{p}_1^{\text{p}_1^1} |
| + | \end{array}</math> |
| + | | <math>\text{p}^\text{p}\!</math> |
| + | | [[Image:Riff 4 Big.jpg|40px]] |
| + | | [[Image:Rote 4 Big.jpg|65px]] |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="12" style="text-align:center; width:100%" |
| + | | width="10%" | <math>5\!</math> |
| + | | width="25%" | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_3^1 |
| + | & = & \text{p}_{\text{p}_2^1}^1 |
| + | \\[10pt] |
| + | & = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1 |
| + | \end{array}</math> |
| + | | width="15%" | <math>\text{p}_{\text{p}_{\text{p}}}\!</math> |
| + | | width="25%" | [[Image:Riff 5 Big.jpg|65px]] |
| + | | width="25%" | [[Image:Rote 5 Big.jpg|40px]] |
| + | |- |
| + | | <math>6\!</math> |
| + | | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_1^1 \text{p}_2^1 |
| + | & = & \text{p}_1^1 \text{p}_{\text{p}_1^1}^1 |
| + | \end{array}</math> |
| + | | <math>\text{p} \text{p}_{\text{p}}\!</math> |
| + | | [[Image:Riff 6 Big.jpg|65px]] |
| + | | [[Image:Rote 6 Big.jpg|80px]] |
| + | |- |
| + | | <math>7\!</math> |
| + | | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_4^1 |
| + | & = & \text{p}_{\text{p}_1^2}^1 |
| + | \\[10pt] |
| + | & = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1 |
| + | \end{array}</math> |
| + | | <math>\text{p}_{\text{p}^{\text{p}}}\!</math> |
| + | | [[Image:Riff 7 Big.jpg|65px]] |
| + | | [[Image:Rote 7 Big.jpg|65px]] |
| + | |- |
| + | | <math>8\!</math> |
| + | | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_1^3 |
| + | & = & \text{p}_1^{\text{p}_2^1} |
| + | \\[10pt] |
| + | & = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1} |
| + | \end{array}</math> |
| + | | <math>\text{p}^{\text{p}_{\text{p}}}\!</math> |
| + | | [[Image:Riff 8 Big.jpg|65px]] |
| + | | [[Image:Rote 8 Big.jpg|65px]] |
| + | |- |
| + | | <math>9\!</math> |
| + | | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_2^2 |
| + | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} |
| + | \end{array}</math> |
| + | | <math>\text{p}_\text{p}^\text{p}\!</math> |
| + | | [[Image:Riff 9 Big.jpg|40px]] |
| + | | [[Image:Rote 9 Big.jpg|80px]] |
| + | |- |
| + | | <math>16\!</math> |
| + | | |
| + | <math>\begin{array}{lll} |
| + | \text{p}_1^4 |
| + | & = & \text{p}_1^{\text{p}_1^2} |
| + | \\[10pt] |
| + | & = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}} |
| + | \end{array}</math> |
| + | | <math>\text{p}^{\text{p}^{\text{p}}}\!</math> |
| + | | [[Image:Riff 16 Big.jpg|65px]] |
| + | | [[Image:Rote 16 Big.jpg|90px]] |
| + | |} |
| + | |} |
| + | |
| + | ===A061396=== |
| + | |
| + | * '''Number of "rooted index-functional forests" (Riffs) on n nodes.''' |
| + | |
| + | * '''Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.''' |
| + | |
| + | * [http://oeis.org/wiki/A061396 OEIS Wiki Entry for A061396]. |
| + | |
| + | ===A062504=== |
| + | |
| + | * '''Triangle in which k-th row lists natural number values for the collection of riffs with k nodes.''' |
| + | |
| + | * [http://oeis.org/wiki/A062504 OEIS Wiki Entry for A062504]. |
| + | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{array}{l|l|r} |
| + | k |
| + | & P_k |
| + | = \{ n : \operatorname{riff}(n) ~\text{has}~ k ~\text{nodes} \} |
| + | = \{ n : \operatorname{rote}(n) ~\text{has}~ 2k + 1 ~\text{nodes} \} |
| + | & |P_k| |
| + | \\[10pt] |
| + | 0 & \{ 1 \} & 1 |
| + | \\ |
| + | 1 & \{ 2 \} & 1 |
| + | \\ |
| + | 2 & \{ 3, 4 \} & 2 |
| + | \\ |
| + | 3 & \{ 5, 6, 7, 8, 9, 16 \} & 6 |
| + | \\ |
| + | 4 & \{ 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536 \} & 20 |
| + | \end{array}</math> |
| + | |} |