Logical negation
MyWikiBiz, Author Your Legacy — Saturday December 21, 2024
(Redirected from Negation)
Jump to navigationJump to search☞ This page belongs to resource collections on Logic and Inquiry.
Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true.
The truth table of \(\operatorname{NOT}~ p,\) also written \(\lnot p,\!\) appears below:
\(p\!\) | \(\lnot p\!\) |
\(\operatorname{F}\) | \(\operatorname{T}\) |
\(\operatorname{T}\) | \(\operatorname{F}\) |
The negation of a proposition \(p\!\) may be found notated in various ways in various contexts of application, often merely for typographical convenience. Among these variants are the following:
\(\text{Notation}\!\) | \(\text{Vocalization}\!\) |
\(\bar{p}\!\) | \(p\!\) bar |
\(\tilde{p}\!\) | \(p\!\) tilde |
\(p'\!\) | \(p\!\) prime \(p\!\) complement |
\(!p\!\) | bang \(p\!\) |
Syllabus
Focal nodes
Peer nodes
- Logical Negation @ InterSciWiki
- Logical Negation @ MyWikiBiz
- Logical Negation @ Subject Wikis
- Logical Negation @ Wikiversity
- Logical Negation @ Wikiversity Beta
Logical operators
Template:Col-breakTemplate:Col-breakTemplate:Col-endRelated topics
- Propositional calculus
- Sole sufficient operator
- Truth table
- Universe of discourse
- Zeroth order logic
Relational concepts
Information, Inquiry
Related articles
- Differential Logic : Introduction
- Differential Propositional Calculus
- Differential Logic and Dynamic Systems
- Prospects for Inquiry Driven Systems
- Introduction to Inquiry Driven Systems
- Inquiry Driven Systems : Inquiry Into Inquiry
Document history
Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.
- Logical Negation, InterSciWiki
- Logical Negation, MyWikiBiz
- Logical Negation, Wikinfo
- Logical Negation, Wikiversity
- Logical Negation, Wikiversity Beta
- Logical Negation, Wikipedia