Difference between revisions of "User:Jon Awbrey/TEST"

MyWikiBiz, Author Your Legacy — Thursday November 28, 2024
Jump to navigationJump to search
Line 37: Line 37:
 
<br>
 
<br>
  
<pre>
 
 
The following Tables develop these ideas in more detail.
 
The following Tables develop these ideas in more detail.
  
Line 48: Line 47:
 
<tr>
 
<tr>
 
<td width="4%" style="border-bottom:2px solid black" align="right">
 
<td width="4%" style="border-bottom:2px solid black" align="right">
    <math>u:</math><br>
+
<math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td>
    <math>v:</math></td>
 
 
<td width="6%" style="border-bottom:2px solid black">
 
<td width="6%" style="border-bottom:2px solid black">
    <math>1100</math><br>
+
<math>\begin{matrix}1100\\1010\end{matrix}</math></td>
    <math>1010</math></td>
 
 
<td width="10%" style="border-bottom:2px solid black; border-right:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black; border-right:2px solid black">
    <math>f</math></td>
+
<math>f</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{11} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{11} \texttt{)}</math><br>
    <math>No ~ u</math><br>
+
<math>No ~ u</math><br>
    <math>is ~ v</math></td>
+
<math>is ~ v</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{10} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{10} \texttt{)}</math><br>
    <math>No ~ u</math><br>
+
<math>No ~ u</math><br>
    <math>is ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{01} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{01} \texttt{)}</math><br>
    <math>No ~ \texttt{(} u \texttt{)}</math><br>
+
<math>No ~ \texttt{(} u \texttt{)}</math><br>
    <math>is ~ v</math></td>
+
<math>is ~ v</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{00} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{00} \texttt{)}</math><br>
    <math>No ~ \texttt{(} u \texttt{)}</math><br>
+
<math>No ~ \texttt{(} u \texttt{)}</math><br>
    <math>is ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{00}</math><br>
+
<math>\ell_{00}</math><br>
    <math>Some ~ \texttt{(} u \texttt{)}</math><br>
+
<math>Some ~ \texttt{(} u \texttt{)}</math><br>
    <math>is  ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is  ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{01}</math><br>
+
<math>\ell_{01}</math><br>
    <math>Some ~ \texttt{(} u \texttt{)}</math><br>
+
<math>Some ~ \texttt{(} u \texttt{)}</math><br>
    <math>is  ~ v</math></td>
+
<math>is  ~ v</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{10}</math><br>
+
<math>\ell_{10}</math><br>
    <math>Some ~ u</math><br>
+
<math>Some ~ u</math><br>
    <math>is  ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is  ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{11}</math><br>
+
<math>\ell_{11}</math><br>
    <math>Some ~ u</math><br>
+
<math>Some ~ u</math><br>
    <math>is  ~ v</math></td></tr>
+
<math>is  ~ v</math></td></tr>
  
 
<tr>
 
<tr>
Line 306: Line 303:
 
<tr>
 
<tr>
 
<td width="4%" style="border-bottom:2px solid black" align="right">
 
<td width="4%" style="border-bottom:2px solid black" align="right">
    <math>u:</math><br>
+
<math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td>
    <math>v:</math></td>
 
 
<td width="6%" style="border-bottom:2px solid black">
 
<td width="6%" style="border-bottom:2px solid black">
    <math>1100</math><br>
+
<math>\begin{matrix}1100\\1010\end{matrix}</math></td>
    <math>1010</math></td>
 
 
<td width="10%" style="border-bottom:2px solid black; border-right:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black; border-right:2px solid black">
    <math>f</math></td>
+
<math>f</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{11} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{11} \texttt{)}</math><br>
    <math>No ~ u</math><br>
+
<math>No ~ u</math><br>
    <math>is ~ v</math></td>
+
<math>is ~ v</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{10} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{10} \texttt{)}</math><br>
    <math>No ~ u</math><br>
+
<math>No ~ u</math><br>
    <math>is ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{01} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{01} \texttt{)}</math><br>
    <math>No ~ \texttt{(} u \texttt{)}</math><br>
+
<math>No ~ \texttt{(} u \texttt{)}</math><br>
    <math>is ~ v</math></td>
+
<math>is ~ v</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\texttt{(} \ell_{00} \texttt{)}</math><br>
+
<math>\texttt{(} \ell_{00} \texttt{)}</math><br>
    <math>No ~ \texttt{(} u \texttt{)}</math><br>
+
<math>No ~ \texttt{(} u \texttt{)}</math><br>
    <math>is ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{00}</math><br>
+
<math>\ell_{00}</math><br>
    <math>Some ~ \texttt{(} u \texttt{)}</math><br>
+
<math>Some ~ \texttt{(} u \texttt{)}</math><br>
    <math>is  ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is  ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{01}</math><br>
+
<math>\ell_{01}</math><br>
    <math>Some ~ \texttt{(} u \texttt{)}</math><br>
+
<math>Some ~ \texttt{(} u \texttt{)}</math><br>
    <math>is  ~ v</math></td>
+
<math>is  ~ v</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{10}</math><br>
+
<math>\ell_{10}</math><br>
    <math>Some ~ u</math><br>
+
<math>Some ~ u</math><br>
    <math>is  ~ \texttt{(} v \texttt{)}</math></td>
+
<math>is  ~ \texttt{(} v \texttt{)}</math></td>
 
<td width="10%" style="border-bottom:2px solid black">
 
<td width="10%" style="border-bottom:2px solid black">
    <math>\ell_{11}</math><br>
+
<math>\ell_{11}</math><br>
    <math>Some ~ u</math><br>
+
<math>Some ~ u</math><br>
    <math>is  ~ v</math></td></tr>
+
<math>is  ~ v</math></td></tr>
  
 
<tr>
 
<tr>
Line 563: Line 558:
  
 
<tr>
 
<tr>
<td style="border-bottom:2px solid black"><math>\texttt{Mnemonic}</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{Mnemonic}</math></td>
<td style="border-bottom:2px solid black"><math>\texttt{Category}</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{Category}</math></td>
<td style="border-bottom:2px solid black"><math>\texttt{Classical Form}</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{Classical Form}</math></td>
<td style="border-bottom:2px solid black"><math>\texttt{Alternate Form}</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{Alternate Form}</math></td>
<td style="border-bottom:2px solid black"><math>\texttt{Symmetric Form}</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{Symmetric Form}</math></td>
<td style="border-bottom:2px solid black"><math>\texttt{Operator}</math></td></tr>
+
<td style="border-bottom:2px solid black"><math>\mathrm{Operator}</math></td></tr>
  
 
<tr>
 
<tr>
<td><math>\texttt{E}</math><br><math>\texttt{Exclusive}</math></td>
+
<td><math>\mathrm{E}</math><br><math>\mathrm{Exclusive}</math></td>
<td><math>\texttt{Universal}</math><br><math>\texttt{Negative}</math></td>
+
<td><math>\mathrm{Universal}</math><br><math>\texttt{Negative}</math></td>
<td><math>\texttt{All} ~ u ~ \texttt{is} ~ \texttt{(} v \texttt{)}</math></td>
+
<td><math>\mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{No} ~ u ~ \texttt{is} ~ v</math></td>
+
<td><math>\mathrm{No} ~ u ~ \mathrm{is} ~ v</math></td>
 
<td><math>\texttt{(} \ell_{11} \texttt{)}</math></td></tr>
 
<td><math>\texttt{(} \ell_{11} \texttt{)}</math></td></tr>
  
 
<tr>
 
<tr>
<td><math>\texttt{A}</math><br><math>\texttt{Absolute}</math></td>
+
<td><math>\mathrm{A}</math><br><math>\mathrm{Absolute}</math></td>
<td><math>\texttt{Universal}</math><br><math>\texttt{Affirmative}</math></td>
+
<td><math>\mathrm{Universal}</math><br><math>\mathrm{Affirmative}</math></td>
<td><math>\texttt{All} ~ u ~ \texttt{is} ~ v</math></td>
+
<td><math>\mathrm{All} ~ u ~ \mathrm{is} ~ v</math></td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{No} ~ u ~ \texttt{is} ~ \texttt{(} v \texttt{)}</math></td>
+
<td><math>\mathrm{No} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td>
 
<td><math>\texttt{(} \ell_{10} \texttt{)}</math></td></tr>
 
<td><math>\texttt{(} \ell_{10} \texttt{)}</math></td></tr>
  
Line 589: Line 584:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{All} ~ v ~ \texttt{is} ~ u</math></td>
+
<td><math>\mathrm{All} ~ v ~ \mathrm{is} ~ u</math></td>
<td><math>\texttt{No} ~ v ~ \texttt{is} ~ \texttt{(} u \texttt{)}</math></td>
+
<td><math>\mathrm{No} ~ v ~ \mathrm{is} ~ \texttt{(} u \texttt{)}</math></td>
<td><math>\texttt{No} ~ \texttt{(} u \texttt{)} ~ \texttt{is} ~ v</math></td>
+
<td><math>\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td>
 
<td><math>\texttt{(} \ell_{01} \texttt{)}</math></td></tr>
 
<td><math>\texttt{(} \ell_{01} \texttt{)}</math></td></tr>
  
Line 597: Line 592:
 
<td style="border-bottom:2px solid black">&nbsp;</td>
 
<td style="border-bottom:2px solid black">&nbsp;</td>
 
<td style="border-bottom:2px solid black">&nbsp;</td>
 
<td style="border-bottom:2px solid black">&nbsp;</td>
<td style="border-bottom:2px solid black"><math>\texttt{All} ~ \texttt{(} v \texttt{)} ~ \texttt{is} ~ u</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{All} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ u</math></td>
<td style="border-bottom:2px solid black"><math>\texttt{No} ~ \texttt{(} v \texttt{)} ~ \texttt{is} ~ \texttt{(} u \texttt{)}</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{No} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ \texttt{(} u \texttt{)}</math></td>
<td style="border-bottom:2px solid black"><math>\texttt{No} ~ \texttt{(} u \texttt{)} ~ \texttt{is} ~ \texttt{(} v \texttt{)}</math></td>
+
<td style="border-bottom:2px solid black"><math>\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td>
 
<td style="border-bottom:2px solid black"><math>\texttt{(} \ell_{00} \texttt{)}</math></td></tr>
 
<td style="border-bottom:2px solid black"><math>\texttt{(} \ell_{00} \texttt{)}</math></td></tr>
  
Line 605: Line 600:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{Some} ~ \texttt{(} u \texttt{)} ~ \texttt{is} ~ \texttt{(} v \texttt{)}</math></td>
+
<td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{Some} ~ \texttt{(} u \texttt{)} ~ \texttt{is} ~ \texttt{(} v \texttt{)}</math></td>
+
<td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td>
 
<td><math>\ell_{00}</math></td></tr>
 
<td><math>\ell_{00}</math></td></tr>
  
Line 613: Line 608:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{Some} ~ \texttt{(} u \texttt{)} ~ \texttt{is} ~ v</math></td>
+
<td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{Some} ~ \texttt{(} u \texttt{)} ~ \texttt{is} ~ v</math></td>
+
<td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td>
 
<td><math>\ell_{01}</math></td></tr>
 
<td><math>\ell_{01}</math></td></tr>
  
 
<tr>
 
<tr>
<td><math>\texttt{O}</math><br><math>\texttt{Obtrusive}</math></td>
+
<td><math>\mathrm{O}</math><br><math>\mathrm{Obtrusive}</math></td>
<td><math>\texttt{Particular}</math><br><math>\texttt{Negative}</math></td>
+
<td><math>\mathrm{Particular}</math><br><math>\mathrm{Negative}</math></td>
<td><math>\texttt{Some} ~ u ~ \texttt{is} ~ \texttt{(} v \texttt{)}</math></td>
+
<td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{Some} ~ u ~ \texttt{is} ~ \texttt{(} v \texttt{)}</math></td>
+
<td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td>
 
<td><math>\ell_{10}</math></td></tr>
 
<td><math>\ell_{10}</math></td></tr>
  
 
<tr>
 
<tr>
<td><math>\texttt{I}</math><br><math>\texttt{Indefinite}</math></td>
+
<td><math>\mathrm{I}</math><br><math>\mathrm{Indefinite}</math></td>
<td><math>\texttt{Particular}</math><br><math>\texttt{Affirmative}</math></td>
+
<td><math>\mathrm{Particular}</math><br><math>\mathrm{Affirmative}</math></td>
<td><math>\texttt{Some} ~ u ~ \texttt{is} ~ v</math></td>
+
<td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ v</math></td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
<td><math>\texttt{Some} ~ u ~ \texttt{is} ~ v</math></td>
+
<td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ v</math></td>
 
<td><math>\ell_{11}</math></td></tr>
 
<td><math>\ell_{11}</math></td></tr>
  
</table></font>
+
</table>
  
 
<br>
 
<br>
 
<pre>
 

Revision as of 17:12, 22 November 2009

Application of Higher Order Propositions to Quantification Theory

Our excursion into the vastening landscape of higher order propositions has finally come round to the stage where we can bring its returns to bear on opening up new perspectives for quantificational logic.

It's hard to tell if it makes any difference from a purely formal point of view, but it serves intuition to devise a slightly different interpretation for the two-valued space that we use as the target of our basic indicator functions. Therefore, let us declare the type of existential-valued functions \(f : \mathbb{B}^k \to \mathbb{E},\) where \(\mathbb{E} = \{ -e, +e \} = \{ \operatorname{empty}, \operatorname{exist} \}\) is a pair of values that indicate whether or not anything exists in the cells of the underlying universe of discourse. As usual, let's not be too fussy about the coding of these functions, reverting to binary codes whenever the intended interpretation is clear enough.

With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions:


\(\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}\)

\(\begin{array}{clcl} \mathrm{A} & \mathrm{Universal~Affirmative} & \mathrm{All} ~ u ~ \mathrm{is} ~ v & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 0 \\ \mathrm{E} & \mathrm{Universal~Negative} & \mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} & \mathrm{Indicator~of} ~ u \cdot v = 0 \\ \mathrm{I} & \mathrm{Particular~Affirmative} & \mathrm{Some} ~ u ~ \mathrm{is} ~ v & \mathrm{Indicator~of} ~ u \cdot v = 1 \\ \mathrm{O} & \mathrm{Particular~Negative} & \mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 1 \end{array}\)


The following Tables develop these ideas in more detail.


\(\text{Table 8.} ~~ \text{Simple Qualifiers of Propositions (Version 1)}\)
\(\begin{matrix}u\!:\\v\!:\end{matrix}\) \(\begin{matrix}1100\\1010\end{matrix}\) \(f\)

\(\texttt{(} \ell_{11} \texttt{)}\)
\(No ~ u\)

\(is ~ v\)

\(\texttt{(} \ell_{10} \texttt{)}\)
\(No ~ u\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\texttt{(} \ell_{01} \texttt{)}\)
\(No ~ \texttt{(} u \texttt{)}\)

\(is ~ v\)

\(\texttt{(} \ell_{00} \texttt{)}\)
\(No ~ \texttt{(} u \texttt{)}\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\ell_{00}\)
\(Some ~ \texttt{(} u \texttt{)}\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\ell_{01}\)
\(Some ~ \texttt{(} u \texttt{)}\)

\(is ~ v\)

\(\ell_{10}\)
\(Some ~ u\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\ell_{11}\)
\(Some ~ u\)

\(is ~ v\)
\(f_{0}\) \(0000\) \(\texttt{(~)}\) 1 1 1 1 0 0 0 0
\(f_{1}\) \(0001\) \(\texttt{(} u \texttt{)(} v \texttt{)}\) 1 1 1 0 1 0 0 0
\(f_{2}\) \(0010\) \(\texttt{(} u\texttt{)} ~ v\) 1 1 0 1 0 1 0 0
\(f_{3}\) \(0011\) \(\texttt{(} u \texttt{)}\) 1 1 0 0 1 1 0 0
\(f_{4}\) \(0100\) \(u ~ \texttt{(} v \texttt{)}\) 1 0 1 1 0 0 1 0
\(f_{5}\) \(0101\) \(\texttt{(} v \texttt{)}\) 1 0 1 0 1 0 1 0
\(f_{6}\) \(0110\) \(\texttt{(} u \texttt{,} v \texttt{)}\) 1 0 0 1 0 1 1 0
\(f_{7}\) \(0111\) \(\texttt{(} u ~ v \texttt{)}\) 1 0 0 0 1 1 1 0
\(f_{8}\) \(1000\) \(u ~ v\) 0 1 1 1 0 0 0 1
\(f_{9}\) \(1001\) \(\texttt{((} u \texttt{,} v \texttt{))}\) 0 1 1 0 1 0 0 1
\(f_{10}\) \(1010\) \(v\) 0 1 0 1 0 1 0 1
\(f_{11}\) \(1011\) \(\texttt{(} u ~ \texttt{(} v \texttt{))}\) 0 1 0 0 1 1 0 1
\(f_{12}\) \(1100\) \(u\) 0 0 1 1 0 0 1 1
\(f_{13}\) \(1101\) \(\texttt{((} u \texttt{)} ~ v \texttt{)}\) 0 0 1 0 1 0 1 1
\(f_{14}\) \(1110\) \(\texttt{((} u \texttt{)(} v \texttt{))}\) 0 0 0 1 0 1 1 1
\(f_{15}\) \(1111\) \(\texttt{((~))}\) 0 0 0 0 1 1 1 1


\(\text{Table 9.} ~~ \text{Simple Qualifiers of Propositions (Version 2)}\)
\(\begin{matrix}u\!:\\v\!:\end{matrix}\) \(\begin{matrix}1100\\1010\end{matrix}\) \(f\)

\(\texttt{(} \ell_{11} \texttt{)}\)
\(No ~ u\)

\(is ~ v\)

\(\texttt{(} \ell_{10} \texttt{)}\)
\(No ~ u\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\texttt{(} \ell_{01} \texttt{)}\)
\(No ~ \texttt{(} u \texttt{)}\)

\(is ~ v\)

\(\texttt{(} \ell_{00} \texttt{)}\)
\(No ~ \texttt{(} u \texttt{)}\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\ell_{00}\)
\(Some ~ \texttt{(} u \texttt{)}\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\ell_{01}\)
\(Some ~ \texttt{(} u \texttt{)}\)

\(is ~ v\)

\(\ell_{10}\)
\(Some ~ u\)

\(is ~ \texttt{(} v \texttt{)}\)

\(\ell_{11}\)
\(Some ~ u\)

\(is ~ v\)
\(f_{0}\) \(0000\) \(\texttt{(~)}\) 1 1 1 1 0 0 0 0
\(f_{1}\) \(0001\) \(\texttt{(} u \texttt{)(} v \texttt{)}\) 1 1 1 0 1 0 0 0
\(f_{2}\) \(0010\) \(\texttt{(} u\texttt{)} ~ v\) 1 1 0 1 0 1 0 0
\(f_{4}\) \(0100\) \(u ~ \texttt{(} v \texttt{)}\) 1 0 1 1 0 0 1 0
\(f_{8}\) \(1000\) \(u ~ v\) 0 1 1 1 0 0 0 1
\(f_{3}\) \(0011\) \(\texttt{(} u \texttt{)}\) 1 1 0 0 1 1 0 0
\(f_{12}\) \(1100\) \(u\) 0 0 1 1 0 0 1 1
\(f_{6}\) \(0110\) \(\texttt{(} u \texttt{,} v \texttt{)}\) 1 0 0 1 0 1 1 0
\(f_{9}\) \(1001\) \(\texttt{((} u \texttt{,} v \texttt{))}\) 0 1 1 0 1 0 0 1
\(f_{5}\) \(0101\) \(\texttt{(} v \texttt{)}\) 1 0 1 0 1 0 1 0
\(f_{10}\) \(1010\) \(v\) 0 1 0 1 0 1 0 1
\(f_{7}\) \(0111\) \(\texttt{(} u ~ v \texttt{)}\) 1 0 0 0 1 1 1 0
\(f_{11}\) \(1011\) \(\texttt{(} u ~ \texttt{(} v \texttt{))}\) 0 1 0 0 1 1 0 1
\(f_{13}\) \(1101\) \(\texttt{((} u \texttt{)} ~ v \texttt{)}\) 0 0 1 0 1 0 1 1
\(f_{14}\) \(1110\) \(\texttt{((} u \texttt{)(} v \texttt{))}\) 0 0 0 1 0 1 1 1
\(f_{15}\) \(1111\) \(\texttt{((~))}\) 0 0 0 0 1 1 1 1


\(\text{Table 10.} ~~ \text{Relation of Quantifiers to Higher Order Propositions}\)
\(\mathrm{Mnemonic}\) \(\mathrm{Category}\) \(\mathrm{Classical Form}\) \(\mathrm{Alternate Form}\) \(\mathrm{Symmetric Form}\) \(\mathrm{Operator}\)
\(\mathrm{E}\)
\(\mathrm{Exclusive}\)
\(\mathrm{Universal}\)
\(\texttt{Negative}\)
\(\mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\)   \(\mathrm{No} ~ u ~ \mathrm{is} ~ v\) \(\texttt{(} \ell_{11} \texttt{)}\)
\(\mathrm{A}\)
\(\mathrm{Absolute}\)
\(\mathrm{Universal}\)
\(\mathrm{Affirmative}\)
\(\mathrm{All} ~ u ~ \mathrm{is} ~ v\)   \(\mathrm{No} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) \(\texttt{(} \ell_{10} \texttt{)}\)
    \(\mathrm{All} ~ v ~ \mathrm{is} ~ u\) \(\mathrm{No} ~ v ~ \mathrm{is} ~ \texttt{(} u \texttt{)}\) \(\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v\) \(\texttt{(} \ell_{01} \texttt{)}\)
    \(\mathrm{All} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ u\) \(\mathrm{No} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ \texttt{(} u \texttt{)}\) \(\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) \(\texttt{(} \ell_{00} \texttt{)}\)
    \(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\)   \(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) \(\ell_{00}\)
    \(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v\)   \(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v\) \(\ell_{01}\)
\(\mathrm{O}\)
\(\mathrm{Obtrusive}\)
\(\mathrm{Particular}\)
\(\mathrm{Negative}\)
\(\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\)   \(\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) \(\ell_{10}\)
\(\mathrm{I}\)
\(\mathrm{Indefinite}\)
\(\mathrm{Particular}\)
\(\mathrm{Affirmative}\)
\(\mathrm{Some} ~ u ~ \mathrm{is} ~ v\)   \(\mathrm{Some} ~ u ~ \mathrm{is} ~ v\) \(\ell_{11}\)