Difference between revisions of "User:Jon Awbrey/WORDPRESS"

MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
Line 1: Line 1:
 
==Work 2==
 
==Work 2==
 +
 +
* HTML and LaTeX markup examples from [http://inquiryintoinquiry.com/work/work-2/ Inquiry Into Inquiry • Work 2].
  
 
===Array Test===
 
===Array Test===

Revision as of 16:50, 2 June 2013

Work 2

Array Test

$latex
|x| = \left\{
\begin{array}{ll}
x  & \text{if \( x \geq 0 \)};
\\
-x & \text{if \( x < 0 \)}.
\end{array}
\right.
&fg=000000$
$latex
|x| = \left\{
\begin{array}{ll}
x  & \text{if}~ x \geq 0;
\\
-x & \text{if}~ x < 0.
\end{array}
\right.
&fg=000000$
$latex
\begin{array}{*{9}{l}}
Alpha & Bravo & Charlie & Delta & Echo & Foxtrot & Golf & Hotel & India
\\
Juliet & Kilo & Lima & Mike & November & Oscar & Papa & Quebec & Romeo
\\
Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing
\end{array}&fg=000000$

Matrix Test

$latex
\begin{matrix}
Alpha & Bravo & Charlie & Delta & Echo & Foxtrot & Golf & Hotel & India
\\
Juliet & Kilo & Lima & Mike & November & Oscar & Papa & Quebec & Romeo
\\
Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing
\end{matrix}&fg=000000$

Tabular Test 1

$latex
\begin{tabular}{lll}
Chicago & U.S.A. & 1893
\\
Z\"{u}rich & Switzerland & 1897
\\
Paris & France & 1900
\\
Heidelberg & Germany & 1904
\\
Rome & Italy & 1908
\end{tabular}&fg=000000$

Tabular Test 2

$latex
\begin{tabular}{|r|r|}
\hline
\( n \) & \( n! \) \\
\hline
1 & 1 \\
2 & 2 \\
3 & 6 \\
4 & 24 \\
5 & 120 \\
6 & 720 \\
7 & 5040 \\
8 & 40320 \\
9 & 362880 \\
10 & 3628800 \\
\hline
\end{tabular}&fg=000000$

Tabular Test 3

$latex
\begin{tabular}{|c|c|*{16}{c}|}
\multicolumn{18}{c}{Table 1. Higher Order Propositions \( (n = 1) \)} \\[4pt]
\hline
\( f \) & \( f \) &
\( m_{0}  \)  & \( m_{1}  \) & \( m_{2}  \) & \( m_{3}  \) &
\( m_{4}  \)  & \( m_{5}  \) & \( m_{6}  \) & \( m_{7}  \) &
\( m_{8}  \)  & \( m_{9}  \) & \( m_{10} \) & \( m_{11} \) &
\( m_{12} \)  & \( m_{13} \) & \( m_{14} \) & \( m_{15} \) \\[4pt]
\hline
\( f_0 \) & \texttt{()} &
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\[4pt]
\( f_1 \) & \texttt{(}\( x \)\texttt{)} &
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\[4pt]
\( f_2 \) & \( x \) &
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\[4pt]
\( f_3 \) & \texttt{(())} &
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\[4pt]
\hline
\end{tabular}&fg=000000$

Tabular Test 4

$latex
\begin{tabular}{|*{7}{c|}}
\multicolumn{7}{c}{\textbf{Table A1. Propositional Forms on Two Variables}} \\
\hline
\( L_1 \) &
\( L_2 \) &&
\( L_3 \) &
\( L_4 \) &
\( L_5 \) &
\( L_6 \) \\
\hline
& & \( x = \) & 1 1 0 0 & & & \\
& & \( y = \) & 1 0 1 0 & & & \\
\hline
\( f_{0} \) &
\( f_{0000} \) &&
0 0 0 0 &
\( (~) \) &
false &
\( 0 \)
\\
\( f_{1} \) &
\( f_{0001} \) &&
0 0 0 1 &
\( (x)(y) \) &
neither \( x \) nor \( y \) &
\( \lnot x \land \lnot y \)
\\
\( f_{2} \) &
\( f_{0010} \) &&
0 0 1 0 &
\( (x)\ y \) &
\( y \) without \( x \) &
\( \lnot x \land y \)
\\
\( f_{3} \) &
\( f_{0011} \) &&
0 0 1 1 &
\( (x) \) &
not \( x \) &
\( \lnot x \)
\\
\( f_{4} \) &
\( f_{0100} \) &&
0 1 0 0 &
\( x\ (y) \) &
\( x \) without \( y \) &
\( x \land \lnot y \)
\\
\( f_{5} \) &
\( f_{0101} \) &&
0 1 0 1 &
\( (y) \) &
not \( y \) &
\( \lnot y \)
\\
\( f_{6} \) &
\( f_{0110} \) &&
0 1 1 0 &
\( (x,\ y) \) &
\( x \) not equal to \( y \) &
\( x \ne y \)
\\
\( f_{7} \) &
\( f_{0111} \) &&
0 1 1 1 &
\( (x\ y) \) &
not both \( x \) and \( y \) &
\( \lnot x \lor \lnot y \)
\\
\hline
\( f_{8} \) &
\( f_{1000} \) &&
1 0 0 0 &
\( x\ y \) &
\( x \) and \( y \) &
\( x \land y \)
\\
\( f_{9} \) &
\( f_{1001} \)  &&
1 0 0 1 &
\( ((x,\ y)) \) &
\( x \) equal to \( y \) &
\( x = y \)
\\
\( f_{10} \) &
\( f_{1010} \) &&
1 0 1 0 &
\( y \) &
\( y \) &
\( y \)
\\
\( f_{11} \) &
\( f_{1011} \) &&
1 0 1 1 &
\( (x\ (y)) \) &
not \( x \) without \( y \) &
\( x \Rightarrow y \)
\\
\( f_{12} \) &
\( f_{1100} \) &&
1 1 0 0 &
\( x \) &
\( x \) &
\( x \)
\\
\( f_{13} \) &
\( f_{1101} \) &&
1 1 0 1 &
\( ((x)\ y) \) &
not \( y \) without \( x \) &
\( x \Leftarrow y \)
\\
\( f_{14} \) &
\( f_{1110} \) &&
1 1 1 0 &
\( ((x)(y)) \) &
\( x \) or \( y \) &
\( x \lor y \)
\\
\( f_{15} \) &
\( f_{1111} \) &&
1 1 1 1 &
\( ((~)) \) &
true &
\( 1 \)
\\
\hline
\end{tabular}&fg=000000$

Table Test 1

<table border="0" style="border-width:0;width:100%;">

<tr>
<td style="border-top:1px solid white;width:35%;"></td>

<td style="border-top:1px solid white;width:65%;">
Can we ever become what we weren’t in eternity?
Can we ever learn what we weren’t born knowing?
Can we ever share what we never had in common?</td>
</tr>

</table>

Table Test 2

<table align="left" border="0" style="border-width:0;">

<tr>
<td style="border-top:1px solid white;">
<p>Everything considered, a determined soul will always manage.</p></td>

<td style="border-top:1px solid white;">(41)</td>
</tr>

<tr>
<td style="border-top:1px solid white;">
<p>To a man devoid of blinders, there is no finer sight than that of the intelligence at grips with a reality that transcends it.</p></td>

<td style="border-top:1px solid white;">(55)</td>
</tr>

</table>

Table Test 3

<table align="center" border="0">

<tr>
<td>
<br>
<p>Everything considered, a determined soul will always manage.</p></td>

<td><p>(41)</p></td>
</tr>

<tr>
<td>
<br>
<p>To a man devoid of blinders, there is no finer sight than that
of the intelligence at grips with a reality that transcends it.</p></td>

<td><p>(55)</p></td>
</tr>

</table>

Table Test 4

<table align="center" border="0" style="border-width:0;text-align:center;">

<tr>
<td style="border-top:1px solid white;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" width="500" height="168" border="0"></a></td>

<td style="border-top:1px solid white;">(1)</td>
</tr>

<tr> 
<td style="border-top:1px solid white;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())= " width="500" height="168" border="0"></a></td>

<td style="border-top:1px solid white;">(2)</td>
</tr>

</table>

Table Test 5

<table align="center" border="0" style="text-align:center;">

<tr>
<td style="padding:10px;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" align="center" width="500" height="168" /></a></td>

<td style="padding:80px 10px;">(1)</td>
</tr>

<tr>
<td style="padding:10px;">
<a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2">
<img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())= " align="center" width="500" height="168" /></a></td>

<td style="padding:80px 10px;">(2)</td>
</tr>

</table>

Table Test 6

<table align="center" border="0" style="text-align:center;">

<caption><font size="+2">$latex \text{Table 1.} ~~ \text{Higher Order Propositions} ~ (n = 1) $</font></caption>

<tr>
<td style="border-bottom:2px solid black;">$latex m_{0} $</td>
<td style="border-bottom:2px solid black;">$latex m_{1} $</td>
<td style="border-bottom:2px solid black;">$latex m_{2} $</td>
<td style="border-bottom:2px solid black;">$latex m_{3} $</td>
<td style="border-bottom:2px solid black;">$latex m_{4} $</td>
<td style="border-bottom:2px solid black;">$latex m_{5} $</td>
<td style="border-bottom:2px solid black;">$latex m_{6} $</td>
<td style="border-bottom:2px solid black;">$latex m_{7} $</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
<td style="background:black;color:white;">1</td>
</tr>

<tr>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
<td style="background:white;color:black;">0</td>
</tr>

</table>