Difference between revisions of "Directory:Jon Awbrey/Papers/Inquiry Driven Systems"

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
(del obsolete semantic tags)
(begin re-organizing front page as table of contents)
Line 13: Line 13:
 
|   ||  
 
|   ||  
 
|}
 
|}
 +
 +
* <big>[[Directory:Jon Awbrey/Papers/Inquiry Driven Systems : Part 1|Part 1]]</big>
 +
* <big>[[Directory:Jon Awbrey/Papers/Inquiry Driven Systems : Part 2|Part 2]]</big>
 +
* <big>[[Directory:Jon Awbrey/Papers/Inquiry Driven Systems : Part 3|Part 3]]</big>
  
 
<div class="nonumtoc">__TOC__</div>
 
<div class="nonumtoc">__TOC__</div>

Revision as of 13:04, 7 September 2010

   
 

I put down the cup and turn to my mind. It is up to my mind to find the truth. But how? What grave uncertainty, whenever the mind feels overtaken by itself; when it, the seeker, is also the obscure country where it must seek and where all its baggage will be nothing to it. Seek? Not only that: create. It is face to face with something that does not yet exist and that only it can accomplish, and bring into its light.

  — Marcel Proust, In Search of Lost Time, [Pro, 1.48]
   

1. Introduction

1.1. Outline of the Project : Inquiry Into Inquiry

1.1.1. Problem

This research is oriented toward a single problem: What is the nature of inquiry? I intend to address crucial questions about the operation, organization, and computational facilitation of inquiry, taking inquiry to encompass the general trend of all forms of reasoning that lead to the features of scientific investigation as their ultimate development.

1.1.2. Method

How will I approach this problem about the nature of inquiry? The simplest answer is this: I will apply the method of inquiry to the problem of inquiry's nature.

This is the most concise and comprehensive answer I know, but it is likely to sound facetious at this point. On the other hand, if I did not actually use the method of inquiry that I describe as inquiry, how could the results possibly be taken seriously? Correspondingly, the questions of methodological self-application and self-referential consistency will be found at the center of this research.

In truth, it is fully possible that every means at inquiry's disposal will ultimately find application in resolving the problem of inquiry's nature. Other than a restraint to valid methods of inquiry — what those are is part of the question — there is no reason to expect a prior limitation on the range of methods that might be required.

This only leads up to the question of priorities: Which methods do I think it wise to apply first? In this project I will give preference to two kinds of technique, one analytic and one synthetic.

The prevailing method of research I will exercise throughout this work involves representing problematic phenomena in a variety of formal systems and then implementing these representations in a computational medium as a way of clarifying the more complex descriptions that evolve.

Aside from its theoretical core, this research is partly empirical and partly heuristic. Therefore, I expect that the various components of methodology will need to be applied in an iterative or even opportunistic fashion, working on any edge of research that appears to be ready at a given time. If forced to anticipate the likely developments, I would sketch the possibilities roughly as follows.

The methodology that underlies this approach has two components: The analytic component involves describing the performance and competence of intelligent agents in the medium of various formal systems. The synthetic component involves implementing these formal systems and the descriptions they express in the form of computational interpreters or language processors.

If everything goes according to the pattern I have observed in previous work, the principal facets of analytic and synthetic procedure will each be prefaced by its own distinctive phase of preparatory activity, where the basic materials needed for further investigation are brought together for comparative study. Taking these initial stages into consideration, I can describe the main modalities of this research in greater detail.

1.1.2.1. The Paradigmatic and Process-Analytic Phase

In this phase I describe the performance and competence of intelligent agents in terms of various formal systems. For aspects of an inquiry process that affect its dynamic or temporal performance I will typically use representations modeled on finite automata and differential systems. For aspects of an inquiry faculty that reflect its formal or symbolic competence I will commonly use representations like formal grammars, logical calculi, constraint-based axiom systems, and rule-based theories in association with different proof styles.

Paradigm. Generic example that reflects significant properties of a target class of phenomena, often derived from a tradition of study.

Analysis. Effective analysis of concepts, capacities, structures, and functions in terms of fundamental operations and computable functions.

Work in this phase typically proceeds according to the following recipe.

  1. Focus on a problematic phenomenon. This is a generic property or process that attracts one's interest, like intelligence or inquiry.
  2. Gather under consideration significant examples of concrete systems or agents that exhibit the property or process in question.
  3. Reflect on their common properties in a search for less obvious traits that might explain their more surprising features.
  4. Check these accounts of the phenomenon in one of several ways. For example, one might (a) search out other systems or situations in nature that manifest the critical traits, or (b) implement the putative traits in computer simulations. If these hypothesized traits generate (give rise to, provide a basis for) the phenomenon of interest, either in nature or on the computer, then one has reason to consider them further as possible explanations.

The last option of the last step already overlaps with the synthetic phase of work. Viewing this procedure within the frame of experimental research, it is important to recognize that computer programs can fill the role of hypotheses, testable (defeasible or falsifiable) construals of how a process is actually, might be possibly, or ought to be optimally carried out.

1.1.2.2. The Paraphrastic and Faculty-Synthetic Phase

The closely allied techniques of task analysis and software development that are known as step-wise refinement and top-down programming in computer science (Wirth 1976, 49, 303) have a long ancestry in logic and philosophy, going back to a strategy for establishing or discharging contextual definitions known as paraphrasis. All of these methods are founded on the idea of providing meaning for operational specifications, definitions in use, alleged descriptions, or incomplete symbols. No excessive generosity with the resources of meaning is intended, though. In practice, a larger share of the routine is spent detecting meaningless fictions rather than discovering meaningful concepts.

Paraphrasis. "A method of accounting for fictions by explaining various purported terms away" (Quine, in Van Heijenoort, 216). See also (Whitehead and Russell, in Van Heijenoort, 217–223).

Synthesis. Regard computer programs as implementations of hypothetical or postulated faculties. Within the framework of experimental research, programs can serve as descriptive, modal, or normative hypotheses, that is, conjectures about how a process is actually accomplished in nature, speculations as to how it might be done in principle, or explorations of how it might be done better in the medium of technological extensions.

For the purposes of this project, I will take paraphrastic definition to denote the analysis of formal specifications and contextual constraints to derive effective implementations of a process or its faculty. This is carried out by considering what the faculty in question is required to do in the many contexts it is expected to serve, and then by analyzing these formal specifications in order to design computer programs that fulfill them.

1.1.2.3. Reprise of Methods

In summary, the whole array of methods will be typical of the top-down strategies used in artificial intelligence research (AIR), involving the conceptual and operational analysis of higher-order cognitive capacities with an eye toward the modeling, grounding, and support of these faculties in the form of effective computer programs. The toughest part of this discipline is in making sure that one does "come down", that is, in finding guarantees that the analytic reagents and synthetic apparatus that one applies are actually effective, reducing the fat of speculation into something that will wash.

Finally, I ought to observe a hedge against betting too much on this or any neat arrangement of research stages. It should not be forgotten that the flourishing of inquiry evolves its own forms of organic integrity. No matter how one tries to tease them apart, the various tendrils of research tend to interleave and intertwine as they will.

1.1.3. Criterion

When is enough enough? What measure can I use to tell if my effort is working? What information is critical in deciding whether my exercise of the method is advancing my state of knowledge toward a solution of the problem?

Given that the problem is inquiry and the method is inquiry, the test of progress and eventual success is just the measure of any inquiry's performance. According to my current understanding of inquiry, and the tentative model of inquiry that will guide this project, the criterion of an inquiry's competence is how well it succeeds in reducing the uncertainty of its agent about its object.

What are the practical tests of whether the results of inquiry succeed in reducing uncertainty? Two gains are often cited: Successful results of inquiry provide the agent with increased powers of prediction and control as to how the object system will behave in given circumstances. If a common theme is desired, at the price of a finely equivocal thread, it can be said that the agent has gained in its power of determination. Hence, more certainty is exhibited by less hesitation, more determination is manifested by less vacillation.

1.1.4. Application

Where can the results be used? Knowledge about the nature of inquiry can be applied. It can be used to improve our personal competence at inquiry. It can be used to build software support for the tasks involved in inquiry.

If it is desired to articulate the loop of self-application a bit further, computer models of inquiry can be seen as building a two-way bridge between experimental science and software engineering, allowing the results of each to be applied in the furtherance of the other.

In yet another development, computer models of learning and reasoning form a linkage among cognitive psychology (the descriptive study of how we think), artificial intelligence (the prospective study of how we might think), and the logic of operations research (the normative study of how we ought to think in order to achieve the goals of reasoning).

1.2. Onus of the Project : No Way But Inquiry

At the beginning of inquiry there is nothing for me to work with but the actual constellation of doubts and beliefs that I have at the moment. Beliefs that operate at the deepest levels can be so taken for granted that they rarely if ever obtrude on awareness. Doubts that oppress in the most obvious ways are still known only as debits and droughts, as the absence of something, one knows not what, and a desire that obliges one only to try. Obscure forms of oversight provide an impulse to replenish the condition of privation but never out of necessity afford a sense of direction. One senses there ought to be a way out at once, or ordered ways to overcome obstruction, or organized or otherwise ways to obviate one's opacity of omission and rescue a secure motivation from the array of conflicting possibilities. In the roughest sense of the word, any action that does in fact lead out of this onerous state can be regarded as a form of "inquiry". Only later, in moments of more leisurely inquiry, when it comes down to classifying and comparing the manner of escapes that can be recounted, does it become possible to recognize the ways in which certain general patterns of strategy are routinely more successful in the long run than others.

1.2.1. A Modulating Prelude

If I aim to devise the kind of computational support that can give the greatest assistance to inquiry, then it must be able to come in at the very beginning, to be of service in the kinds of formless and negative conditions that I just described, and to help people navigate a way through the constellations of contingent, incomplete, and contradictory indications that they actually find themselves sailing under at present.

In the remainder of this section I will try to indicate as briefly as possible the nature of the problem that must be faced in this particular approach to inquiry, and to explain what a large share of the ensuing fuss will be directed toward clearing up.

Toward the end of this discussion I will be using highly concrete mathematical models, or very specific families of combinatorial objects, to represent the abstract structures of experiential sequences that agents pass through. If these primitive and simplified models are to be regarded as something more than mere toys, and if the relations of particular experiences to particular models, along with the structural relationships that exist within the field of experiences and again within the collection of models, are not to be dismissed as category confusions, then I will need to develop a toolbox of logical techniques that can be used to justify these constructions. The required technology of categorical and relational notions will be developed in the process of addressing its basic task: To show how the same conceptual categories can be applied to materials and models of experience that are radically diverse in their specific contents and peculiar to the states of the particular agents to which they attach.

1.2.2. A Fugitive Canon

The principal difficulties associated with this task appear to spring from two roots.

First, there is the issue of computational mediation. In using the sorts of sequences that computers go through to mediate discussion of the sorts of sequences that people go through, it becomes necessary to re-examine all of the facilitating assumptions that are commonly taken for granted in relating one human experience to another, that is, in describing and building structural relationships among the experiences of human agents.

Second, there is the problem of representing the general in the particular. How is it possible for the most particular imaginable things, namely, the transient experiential states of agents, to represent the most general imaginable things, namely, the agents' own conceptions of the abstract categories of experience?

Finally, not altogether as an afterthought, there is a question that binds these issues together. How does it make sense to apply one's individual conceptions of the abstract categories of experience, not only to the experiences of oneself and others, but in points of form to compare them with the structures present in mathematical models?

1.3. Option of the Project : A Way Up To Inquiry

I begin with an informal examination of the concept of inquiry. This section takes as its subjects the supposed faculty of inquiry in general and the present inquiry into inquiry in particular, and attempts to analyze them in relation to each other on formal principles alone.

The initial set of concepts I need to get discussion started are few. Assuming that a working set of ideas can be understood on informal grounds at the outset, I anticipate being able to formalize them to a greater degree as the project gets under way. Inquiry in general will be described as encompassing particular inquiries. Particular forms of inquiry, regarded as phenomenal processes, will be analyzed in terms of simpler kinds of phenomenal processes.

As a phenomenon, a particular way of doing inquiry is regarded as embodied in a faculty of inquiry, as possessed by an agent of inquiry. As a process, a particular example of inquiry is regarded as extended in time through a sequence of states, as experienced by its ongoing agent. It is envisioned that an agent or faculty of any generically described phenomenal process, inquiry included, could be started off from different initial states and would follow different trajectories of subsequent states, and yet there would be a recognizable quality or abstractable property that justifies invoking the name of the genus.

The steps of this analysis will be annotated below by making use of the following conventions. Lower case letters denote phenomena, processes, or faculties under investigation. Upper case letters denote classes of the same sorts of entities. Special use is made of the following symbols:

Y = genus of inquiry,
y = generic inquiry,
y0 = present inquiry.

Compositions of faculties are indicated by concatenating their names, posed in the sense that the right-indicated faculty applies to the left-indicated faculty, in the following form:

f \(\cdot\) g

A notation of the form

f >= g

indicates that f is greater than or equal to g in a decompositional series, in other words, f possesses g as a component.

The coset notation

F \(\cdot\) G

indicates a class of faculties of the form

f \(\cdot\) g,

with f in F and g in G.

Notations like

{?}, {?, ?}, {?, ?, ?}, …

serve as proxies for unknown components and indicate tentative analyses of faculties in question.

1.3.1. Initial Analysis of Inquiry : Allegro Aperto

If the faculty of inquiry is a coherent power, then it has an active or instrumental face, a passive or objective face, and a substantial body of connections between them.

y = {?}

In giving the current inquiry a reflexive cast, as inquiry into inquiry, I have brought inquiry face to face with itself, inditing it to apply its action in pursuing a knowledge of its passion.

y0 = y \(\cdot\) y = {?}{?}

If this juxtaposition of characters is to have a meaningful issue, then the fullness of its instrumental and objective aspects must have recourse to easier actions and simpler objects.

y >= {?, ?}

Looking for an edge on each face of inquiry, as a plausible option for beginning to apply one to the other, I find what seems a likely pair. I begin with an aspect of instrumental inquiry that is easy to do, namely discussion, along with an aspect of objective inquiry that is unavoidable to discuss, namely formalization.

y >= {disc, form}

In accord with this plan, the body of this section is devoted to a discussion of formalization.

y0 = y \(\cdot\) y >= {d, f}{d, f} >= {f}{d}

1.3.2. Discussion of Discussion

But first, I nearly skipped a step. Though it might present itself as an interruption, a topic so easy that I almost omitted it altogether deserves at least a passing notice.

y0 = y \(\cdot\) y >= {d, f}{d, f} >= {d}{d}

Discussion is easy in general because its termination criterion is relaxed to the point of becoming otiose. A discussion of things in general can be pursued as an end in itself, with no consideration of any purpose but persevering in its current form, and this accounts for the virtually perpetual continuation of many a familiar and perennial discussion.

There's a catch here that applies to all living creatures: In order to keep talking one has to keep living. This brings discussion back to its role in inquiry, considered as an adaptation of living creatures designed to help them deal with their not so virtual environments. If discussion is constrained to the envelope of life and required to contribute to the trend of inquiry, instead of representing a kind of internal opposition, then it must be possible to tighten up the loose account and elevate the digressionary narrative into a properly directed inquiry. This brings an end to my initial discussion of discussion.

1.3.3. Discussion of Formalization : General Topics

Because this project makes constant use of formal models of phenomenal processes, it is appropriate at this point to introduce the understanding of formalization that I will use throughout this work and to preview a concrete example of its application.

1.3.3.1. A Formal Charge

An introduction to the topic of formalization, if proper, is obliged to begin informally. But it will be my constant practice to keep a formal eye on the whole proceedings. What this form of observation reveals must be kept silent for the most part at first, but I see no rule against sharing with the reader the general order of this watch:

  1. Examine every notion of the casual intuition that enters into the informal discussion and inquire into its qualifications as a potential candidate for formalization.
  2. Pay special attention to the nominal operations that are invoked to substantiate each tentative explanation of a critically important process. Often, but not infallibly, these can be detected appearing in the guise of "-ionized" terms, words ending in "-ion" that typically connote both a process and its result.
  3. Ask yourself, with regard to each postulant faculty in the current account, explicitly charged or otherwise, whether you can imagine any recipe, any program, any rule of procedure for carrying out the form, if not the substance, of what it does, or an aspect thereof.
1.3.3.2. A Formalization of Formalization?

An immediate application of the above rules is presented here, in hopes of giving the reader a concrete illustration of their use in a ready example, but the issues raised can quickly diverge into yet another distracting digression, one not so easily brought under control as the discussion of discussion, but whose complexity probably approaches that of the entire task. Therefore, a partial adumbration of its character will have to suffice for the present.

y0 = y \(\cdot\) y >= {d, f}{d, f} >= {f}{f}

To illustrate the formal charge by taking the present matter to task, the word formalization is itself exemplary of the -ionized terms falling under the charge, and so it can be lionized as the nominal head of a prospectively formal discussion. The reader has a right to object at this point that I have not described what particular action I intend to convey under the heading of formalization, by no means enough to begin applying it to any term, much less itself. However, anyone can recognize on syntactic grounds that the word is an instance of the formal rule, purely from the character of its terminal -ion, and this can be done aside from all clues about the particular meaning that I intend it to have at the end of formalization.

Unlike a mechanical interpreter meeting with the declaration of an undefined term for the very first time, the human reader of this text has the advantage of a prior acquaintance with almost every term that might conceivably enter into informal discussion. And formalization is a stock term widely traded in the forums of ordinary and technical discussion, so the reader is bound to have met with it in the context of practical experience and to have attached a personal concept to it. Therefore, this inquiry into formalization begins with a writer and a reader in a state of limited uncertainty, each attaching a distribution of meanings in practice to the word formalization, but uncertain whether their diverse spectra of associations can presently constitute or eventually converge to compatible arrays of effective meaning.

To review: The concept of formalization itself is an item of informal discussion that might be investigated as a candidate for formalization. For each aspect or component of the formalization process that I plan to transport across the semi-permeable threshold from informal to formal discussion, the reader has permission to challenge it, plus an open invitation to question every further process that I mention as a part of its constitution, and to ask with regard to each item whether its registration has cleared up the account in any measure or merely rung up a higher charge on the running bill of fare.

The reader can follow this example with every concept that I mention in the explanation of formalization, and again in the larger investigation of inquiry, and be assured that it is has not often slipped my attention to at least venture the same, though a delimitation of each exploration in its present state of completion would be far too tedious and tenuous to escape expurgation.

1.3.3.3. A Formalization of Discussion?

The previous section took the concept of formalization as an example of a topic that a writer might try to translate from informal to formal discussion, perhaps as a way of clarifying the general concept to an optimal degree, or perhaps as a way of communicating a particular concept of it to a reader. In either case the formalization process, that aims to translate a concept from informal to formal discussion, is itself mediated by a form of discussion: (1) that interpreters conduct as a part of their ongoing monologue with themselves, or (2) that a writer (speaker) conducts in real or imagined dialogue with a reader (hearer). In view of this, I see no harm in letting the concept of discussion be stretched to cover all attempted processes of formalization.

F ⊆ D

In this section, I step back from the example of formalization and consider the general task of clarifying and communicating concepts by means of a properly directed discussion. Let this kind of motivated or measured discussion be referred to as a meditation, that is, "a discourse intended to express its author's reflections or to guide others in contemplation" (Webster's). The motive of a meditation is to mediate a certain object or intention, namely, the system of concepts intended for clarification or communication. The measure of a meditation is a system of values that permits its participants to tell how close they are to achieving its object. The letter "M" will be used to annotate this form of meditation.

F ⊆ M ⊆ D

This brings the discussion around to considering the intentional objects of measured discussions and the qualifications of a writer so motivated. Just what is involved in achieving the object of a motivated discussion? Can these intentions be formalized?

y0 = y \(\cdot\) y >= {d, f}{d, f} >= {d}{f}
  • The writer's task is not to create meaning from nothing, but to construct a relation from the typical meanings that are available in ordinary discourse to the particular meanings that are intended to be the effects of a particular discussion.

In case there is difficulty with the meaning of the word meaning, I replace its use with references to a system of interpretation (SOI), a technical concept that will be increasingly formalized as this project proceeds. Thus, the writer's job description is reformulated as follows.

  • The writer's task is not to create a system of interpretation (SOI) from nothing, but to construct a relation from the typical SOI's that are available in ordinary discourse to the particular SOI's that are intended to be the effects of a particular discussion.

This assignment begins with an informal system of interpretation (SOI1), and builds a relation from it to another system of interpretation (SOI2). The first is an informal SOI that amounts to a shared resource of writer and reader. The latter is a system of meanings in practice that is the current object of the writer's intention to recommend for the reader's consideration and, hopefully, edification. In order to have a compact term for highlighting the effects of a discussion that builds a relation between SOI's, I will call this aspect of the process narration.

It is the writer's ethical responsibility to ensure that a discourse is potentially edifying with respect to the reader's current SOI, and the reader's self-interest to evaluate whether a discourse is actually edifying from the perspective of the reader's present SOI.

Formally, the relation that the writer builds from SOI to SOI can always be cast or recast as a three-place relation, one whose staple element of structure is an ordered or indexed triple. One component of each triple is anchored in the interpreter of the moment, and the other two form a connection with the source and target SOI's of the current assignment.

Once this relation is built, a shift in the attention of any interpreter or a change in the present focus of discourse can leave the impression of a transformation taking place from SOI1 to SOI2, but this is more illusory (or allusory) than real. To be more precise, this style of transformation takes place on a virtual basis, and need not have the substantive impact (or import) that a substantial replacement of one SOI by another would imply. For a writer to affect a reader in this way would simply not be polite. A moment's consideration of the kinds of SOI-building worth having leads me to enumerate a few characteristics of polite discourse or considerate discussion.

If this form of SOI-building narrative is truly intended to edify and educate, whether pursued in monologue or dialogue fashion, then its action cannot be forcibly to replace the meanings in practice a sign already has with others of an arbitrary nature, but freely to augment the options for meaning and powers for choice in the resulting SOI.

As conditions for the possibility of considerate but significant narration, there are a couple of requirements placed on the writer and the reader. Considerate narration, constructing a relation from SOI to SOI in a politic fashion, cannot operate in an infectious or addictive manner, invading a SOI like a virus or a trojan horse, but must transfer its communication into the control of the receiving SOI. Significant communication, in which the receiving SOI is augmented by options for meaning and powers for choice that it did not have before, requires a SOI on the reader's part that is extensible in non-trivial ways.

At this point, the discussion has touched on a topic, in one of its manifold aspects, that it will encounter repeatedly, under a variety of aspects, throughout this work. In recognition of this circumstance, and to prepare the way for future discussion, it seems like a good idea to note a few of the aliases that this protean topic can be found lurking under, and to notice the logical relationships that exist among its several different appearances.

On several occasions, this discussion of inquiry will arrive at a form of aesthetic deduction, in general terms, a piece of reasoning that ends with a design recommendation, in this case, where an analysis of the general purposes and interests of inquiry leads to the conclusion that a certain property of discussion is an admirable one, and that the quality in question forms an essential part of the implicit value system that is required to guide inquiry and make it what it is meant to be, a method for advancing toward desired forms of knowledge. After a collection of admirable qualities has been recognized as cohering together into a unity, it becomes natural to ask: What is the underlying reality that inheres in these qualities, and what are the logical relations that bind them together into the qualifications of inquiry and a definition of exactly what is desired for knowledge?

1.3.3.4. A Concept of Formalization

The concept of formalization is intended to cover the whole collection of activities that serve to build a relation between casual discussions, those that take place in the ordinary context of informal discourse, and formal discussions, those that make use of completely formalized models. To make a long story short, formalization is the narrative operation or active relation that construes the situational context in the form of a definite text. The end product that results from the formalization process is analogous to a snapshot or a candid picture, a relational or functional image that captures an aspect of the casual circumstances.

Relations between casual and formal discussion are often treated in terms of a distinction between two languages, the meta-language and the object language, linguistic systems that take complementary roles in filling out the discussion of interest. In the usual approach, issues of formalization are addressed by postulating a distinction between the meta-language, the descriptions and conceptions from ordinary language and technical discourse that can be used without being formalized, and the object language, the domain of structures and processes that can be studied as a completely formalized object.

1.3.3.5. A Formal Approach

I plan to approach the issue of formalization from a slightly different angle, proceeding through an analysis of the medium of interpretation and developing an effective conception of interpretive frameworks or interpretive systems. This concept refers to any organized system of interpretive practice, ranging from those used in everyday speech, to the ones that inform technical discourse, to the kinds of completely formalized symbol systems that one can safely regard as mathematical objects. Depending on the degree of objectification that it possesses from one's point of view, the same system of conduct can be variously described as an interpretive framework (IF), interpretive system (IS), interpretive object (IO), or object system (OS). These terms are merely suggestive — no rigid form of classification is intended.

Many times, it is convenient to personify the interpretive organization as if it were embodied in the actions of a typical user of the framework or a substantive agent of the system. I will call this agent the interpreter of the moment. At other times, it may be necessary to analyze the action of interpretation more carefully. At these times, it is important to remember that this form of personification is itself a figure of speech, one that has no meaning outside a fairly flexible interpretive framework. Thus, the term interpreter can be a cipher analogous to the terms X, unknown, or to whom it may concern appearing in a system of potentially recursive constraints. As such, it serves in the role of an indeterminate symbol, in the end to be solved for a fitting value, but in the mean time conveying an appearance of knowledge in a place where very little is known about the subject itself.

A meta-language corresponds to what I call an interpretive framework. Besides a set of descriptions and conceptions, it embodies the whole collective activity of unexamined structures and automatic processes that are trusted by agents at a given moment to make its employment meaningful in practice. An interpretive framework is best understood as a form of conduct, that is, a comprehensive organization of related activities.

In use, an interpretive framework operates to contain activity and constrain the engagement of agents to certain forms of active involvement and dynamic participation, and manifests itself only incidentally in the manipulation of compact symbols and isolated instruments. In short, though a framework may have pointer dials and portable tools attached to it, it is usually too incumbent and cumbersome to be easily moved on its own grounds, at least, it rests beyond the scope of any local effort to do so.

An interpretive framework (IF) is set to work when an agent or agency becomes involved in its organization and participates in the forms of activity that make it up. Often, an IF is founded and persists in operation long before any participant is able to reflect on its structure or to post a note of its character to the constituting members of the framework. In some cases, the rules of the IF in question forbid the act of reflecting on its form. In practice, to the extent that agents are actively involved in filling out the requisite forms and taking part in the step by step routines of the IF they may have little surplus memory capacity to memorandize the big picture even when it is permitted in principle.

An object language is a special case of the kind of formal system that is so completely formalized that it can be regarded as combinatorial object, an inactive image of a form of activity that is meant for the moment to be studied rather than joined.

The supposition that there is a meaningful and well-defined distinction between object language and meta-language ordinarily goes unexamined. This means that the assumption of a distinction between them is de facto a part of the meta-language and not even an object of discussion in the object language. A slippery slope begins here. A failure to build reflective capacities into an interpretive framework can let go unchallenged the spurious opinion that presumes there can be only one way to draw a distinction between object language and meta-language.

The next natural development is to iterate the supposed distinction. This represents an attempt to formalize and thereby objectify parts of the meta-language, precipitating it like a new layer of pearl or crystal from the resident medium or mother liquor, and thereby preparing the decantation of a still more pervasive and ethereal meta-meta-language. The successive results of this process can have a positivistically intoxicating effect on the human intellect. But a not so happy side-effect leads the not quite mindful cerebration up and down a blind alley, chasing the specious impression that just beyond the realm of objective nature there lies a unique fractionation of permeabilities and a permanent hierarchy of effabilities in language.

The grounds of discussion I am raking over here constellate a rather striking scene, especially for something intended as a neutral backdrop. Unlike other concerns, the points I am making seem obvious to all reasonable people at the outset of discussion, and yet the difficulties that follow as inquiry develops get muddier and more grating the more one probes and stirs them up. A large measure of the blame, I think, can be charged to a misleading directive that people derive from the epithet meta, leading them to search for higher and higher levels of meaning and truth, on beyond language, on beyond any conceivable system of signs, and on beyond sense. Prolonged use of the prefix meta leads people to act as if a meta-language were step outside of ordinary language, or an artificial platform constructed above and beyond natural language, and then they forget that formal models are developments internal to the informal context. For this reason among others, I suggest replacing talk about rigidly stratified object languages and meta-languages with talk about contingent interpretive frameworks.

To avoid the types of cul-de-sac (cultist act) encountered above, I am taking some pains to ensure a reflective capacity for the interpretive frameworks I develop in this project. This is a capacity that natural languages always assume for themselves, instituting specialized discourses as developments that take place within their frame and not as constructs that lie beyond their scope. Any time the levels of recursive discussion become too involved to manage successfully, one needs to keep available the resource of instant wisdom, the modest but indispensable quantum of ready understanding, that restores itself on each return to the ordinary universe (OU).

From this angle of approach, let us try to view afresh the manner of drawing distinctions between various levels of formalization in language. Once again, I begin in the context of ordinary discussion, and if there is any distinction to be drawn between objective and instrumental languages then it must be possible to describe it within the frame of this informally discursive universe.

1.3.3.6. A Formal Development

The point of view I take on the origin and development of formal models is that they arise with agents retracing structures that already exist in the context of informal activity, until gradually the most relevant and frequently reinforced patterns become emphasized and emboldened enough to continue their development as nearly autonomous styles, in brief, as genres growing out of a particular paradigm.

Taking the position that formal models develop within the framework of informal discussion, the questions that become important to ask of a prospective formal model are (1) whether it highlights the structure of its supporting context in a transparent form of emphasis and a relevant reinforcement of salient features, and (2) whether it reveals the active ingredients of its source materials in a critically reflective recapitulation or an analytically representative recipe, or (3) whether it insistently obscures what little fraction of its domain it manages to cover.

1.3.3.7. A Formal Persuasion

An interpretive system can be taken up with very little fanfare, since it does not enjoin one to declare undying allegiance to a particular point of view or to assign each piece of text in view to a sovereign territory, but only to entertain different points of view on the use of symbols. The chief design consideration for an interpretive system is that it must never function as a virus or addiction. Its suggestions must always be, initially and finally, purely optional adjunctions to whatever interpretive framework was already in place before it installed itself on the scene. Interpretive systems are not constituted in the faith that anything nameable will always be dependable, nor articulated in fixed principles that determine what must be doubted and what must not, but rest only in a form of self-knowledge that recognizes the doubts and beliefs that one actually has at each given moment.

Before this project is done I will need to have developed an analytic and computational theory of interpreters and interpretive frameworks. In the aspects of this theory that I can anticipate at this point, an interpreter or interpretive framework is exemplified by a collective activity of symbol-using practices like those that might be found embodied in a person, a community, or a culture. Each one forms a moderately free and independent perspective, with no objective rankings of supremacy in practice that all interpretive frameworks are likely to support at any foreseeable moment in their fields of view. Of course, each interpreter initially enters discussion operating as if its own perspective were meta in comparison to all the others, but a well-developed interpretive framework is likely to have acquired the notion and taken notice of the fact that this is not likely to be a universally shared opinion (USO).

1.3.4. Discussion of Formalization : Concrete Examples

The previous section outlined a variety of general issues surrounding the concept of formalization. The following section will plot the specific objectives of this project in constructing formal models of intellectual processes. In this section I wish to take a breather between these abstract discussions in order to give their main ideas a few points of contact with terra firma. To do this, I examine a selection of concrete examples, artificially constructed to approach the minimum levels of non-trivial complexity, that are intended to illustrate the kinds of mathematical objects I have in mind using as formal models.

1.3.4.1. Formal Models : A Sketch

To sketch the features of the modeling activity that are relevant to the immediate purpose: The modeler begins with a phenomenon of interest or a process of interest (POI) and relates it to a formal model of interest (MOI), the whole while working within a particular interpretive framework (IF) and relating the results from one system of interpretation (SOI) to another, or to a subsequent development of the same SOI.

The POI's that define the intents and the purposes of this project are the closely related processes of inquiry and interpretation, so the MOI's that must be formulated are models of inquiry and interpretation, species of formal systems that are even more intimately bound up than usual with the IF's employed and the SOI's deployed in their ongoing development as models.

Since all of the interpretive systems and all of the process models that are being mentioned here come from the same broad family of mathematical objects, the different roles that they play in this investigation are mainly distinguished by variations in their manner and degree of formalization:

  1. The typical POI comes from natural sources and casual conduct. It is not formalized in itself but only in the form of its image or model, and just to the extent that aspects of its structure and function are captured by a formal MOI. But the richness of any natural phenomenon or realistic process seldom falls within the metes and bounds of any final or finite formula.
  2. Beyond the initial stages of investigation, the MOI is postulated as a completely formalized object, or is quickly on its way to becoming one. As such, it serves as a pivotal fulcrum and a point of application poised between the undefined reaches of phenomena and noumena, respectively, terms that serve more as directions of pointing than as denotations of entities. What enables the MOI to grasp these directions is the quite felicitous mathematical circumsatnce that there can be well-defined and finite relations between entities that are infinite and even indefinite in themselves. Indeed, exploiting this handle on infinity is the main trick of all computational models and effective procedures. It is how a finitely informed creature (FIC) can "make infinite use of finite means". Thus, my reason for calling the MOI cardinal or pivotal is that it forms a model in two senses, loosely analogical and more strictly logical, integrating twin roles of the model concept in a single focus.
  3. Finally, the IF's and the SOI's always remain partly out of sight, caught up in various stages of explicit notice between casual informality and partial formalization, with no guarantee or even much likelihood of a completely articulate formulation being forthcoming or even possible. Still, it is usually worth the effort to try lifting one edge or another of these frameworks and backdrops into the light, at least for a time.
1.3.4.2. Sign Relations : A Primer

To the extent that their structures and functions can be discussed at all, it is likely that all of the formal entities that are destined to develop in this approach to inquiry will be instances of a class of three-place relations called sign relations. At any rate, all of the formal structures that I have examined so far in this area have turned out to be easily converted to or ultimately grounded in sign relations. This class of triadic relations constitutes the main study of the pragmatic theory of signs, a branch of logical philosophy devoted to understanding all types of symbolic representation and communication.

There is a close relationship between the pragmatic theory of signs and the pragmatic theory of inquiry. In fact, the correspondence between the two studies exhibits so many parallels and coincidences that it is often best to treat them as integral parts of one and the same subject. In a very real sense, inquiry is the process by which sign relations come to be established and continue to evolve. In other words, inquiry, "thinking" in its best sense, "is a term denoting the various ways in which things acquire significance" (Dewey). Thus, there is an active and intricate form of cooperation that needs to be appreciated and maintained between these converging modes of investigation. Its proper character is best understood by realizing that the theory of inquiry is adapted to study the developmental aspects of sign relations, a subject which the theory of signs is specialized to treat from structural and comparative points of view.

Because the examples in this section have been artificially constructed to be as simple as possible, their detailed elaboration can run the risk of trivializing the whole theory of sign relations. Still, these examples have subtleties of their own, and their careful treatment will serve to illustrate important issues in the general theory of signs.

Imagine a discussion between two people, Ann and Bob, and attend only to that aspect of their interpretive practice that involves the use of the following nouns and pronouns: "Ann", "Bob", "I", "you".

  • The object domain of this discussion fragment is the set of two people {Ann, Bob}.
  • The syntactic domain or the sign system of their discussion is limited to the set of four signs {"Ann", "Bob", "I", "You"}.

In their discussion, Ann and Bob are not only the passive objects of nominative and accusative references but also the active interpreters of the language that they use. The system of interpretation (SOI) associated with each language user can be represented in the form of an individual three-place relation called the sign relation of that interpreter.

Understood in terms of its set-theoretic extension, a sign relation L is a subset of a cartesian product O × S × I. Here, O, S, I are three sets that are known as the object domain, the sign domain, and the interpretant domain, respectively, of the sign relation L ⊆ O × S × I.

In general, the three domains of a sign relation can be any sets whatsoever, but the kinds of sign relations that are contemplated in a computational framework are usually constrained to having I ⊆ S. In this case, interpretants are just a special variety of signs, and this makes it convenient to lump signs and interpretants together into a single class called the syntactic domain. In the forthcoming examples, S and I are identical as sets, so the very same elements manifest themselves in two different roles of the sign relations in question. When it is necessary to refer to the whole set of objects and signs in the union of the domains O, S, I for a given sign relation L, one may refer to this set as the World of L and write W = WL = O ∪ S ∪ I.

To facilitate an interest in the abstract structures of sign relations, and to keep the notations as brief as possible as the examples become more complicated, it serves to introduce the following general notations:

O = Object Domain
S = Sign Domain
I = Interpretant Domain

Introducing a few abbreviations for use in considering the present Example, we have the following data:

O = {Ann, Bob} = {A, B}
S = {"Ann", "Bob", "I", "You"} = {"A", "B", "i", "u"}
I = {"Ann", "Bob", "I", "You"} = {"A", "B", "i", "u"}

In the present example, S = I = syntactic domain.

The sign relation associated with a given interpreter J is denoted LJ  or L(J). Tables 1 and 2 give the sign relations associated with the interpreters A and B, respectively, putting them in the form of relational databases. Thus, the rows of each Table list the ordered triples of the form ‹osi› that make up the corresponding sign relations, LA LB  ⊆ O × S × I. It is often tempting to use the same names for objects and for relations involving these objects, but it is best to avoid this in a first approach, taking up the issues that this practice raises after the less problematic features of these relations have been treated.

Table 1. Sign Relation of Interpreter A
Object Sign Interpretant
A "A" "A"
A "A" "i"
A "i" "A"
A "i" "i"
B "B" "B"
B "B" "u"
B "u" "B"
B "u" "u"


Table 2. Sign Relation of Interpreter B
Object Sign Interpretant
A "A" "A"
A "A" "u"
A "u" "A"
A "u" "u"
B "B" "B"
B "B" "i"
B "i" "B"
B "i" "i"


These Tables codify a rudimentary level of interpretive practice for the agents A and B, and provide a basis for formalizing the initial semantics that is appropriate to their common syntactic domain. Each row of a Table names an object and two co-referent signs, making up an ordered triple of the form ‹osi› that is called an elementary relation, that is, one element of the relation's set-theoretic extension.

Already in this elementary context, there are several different meanings that might attach to the project of a formal semiotics, or a formal theory of meaning for signs. In the process of discussing these alternatives, it is useful to introduce a few terms that are occasionally used in the philosophy of language to point out the needed distinctions.

One aspect of semantics is concerned with the reference that a sign has to its object, which is called its denotation. For signs in general, neither the existence nor the uniqueness of a denotation is guaranteed. Thus, the denotation of a sign can refer to a plural, a singular, or a vacuous number of objects. In the pragmatic theory of signs, these references are formalized as certain types of dyadic relations that are obtained by projection from the triadic sign relations.

The dyadic relation that constitutes the denotative component of a sign relation L is denoted Den(L). Information about the denotative component of semantics can be derived from L by taking its dyadic projection on the plane that is generated by the object domain and the sign domain, indicated by any one of the equivalent forms, ProjOS L, LOS , or L12 , and defined as follows:

Den(L) = ProjOS L = LOS = {‹os› ∈ O × S : ‹osi› ∈ L for some iI}.

Looking to the denotative aspects of the present example, various rows of the Tables specify that A uses "i" to denote A and "u" to denote B, whereas B uses "i" to denote B and "u" to denote A. It is utterly amazing that even these impoverished remnants of natural language use have properties that quickly bring the usual prospects of formal semantics to a screeching halt.

The other dyadic aspects of semantics that might be considered concern the reference that a sign has to its interpretant and the reference that an interpretant has to its object. As before, either type of reference can be multiple, unique, or empty in its collection of terminal points, and both can be formalized as different types of dyadic relations that are obtained as planar projections of the triadic sign relations.

The connection that a sign makes to an interpretant is called its connotation. In the general theory of sign relations, this aspect of semantics includes the references that a sign has to affects, concepts, impressions, intentions, mental ideas, and to the whole realm of an agent's mental states and allied activities, broadly encompassing intellectual associations, emotional impressions, motivational impulses, and real conduct. This complex ecosystem of references is unlikely ever to be mapped in much detail, much less completely formalized, but the tangible warp of its accumulated mass is commonly alluded to as the connotative import of language. Given a particular sign relation L, the dyadic relation that constitutes the connotative component of L is denoted Con(L).

The bearing that an interpretant has toward a common object of its sign and itself has no standard name. If an interpretant is considered to be a sign in its own right, then its independent reference to an object can be taken as belonging to another moment of denotation, but this omits the mediational character of the whole transaction.

Given the service that interpretants supply in furnishing a locus for critical, reflective, and explanatory glosses on objective scenes and their descriptive texts, it is easy to regard them as annotations both of objects and of signs, but this function points in the opposite direction to what is needed in this connection. What does one call the inverse of the annotation function? More generally asked, what is the converse of the annotation relation?

In light of these considerations, I find myself still experimenting with terms to suit this last-mentioned dimension of semantics. On a trial basis, I refer to it as the ideational, the intentional, or the canonical component of the sign relation, and I provisionally refer to the reference of an interpretant sign to its object as its ideation, its intention, or its conation. Given a particular sign relation L, the dyadic relation that constitutes the intentional component of L is denoted Int(L).

A full consideration of the connotative and intentional aspects of semantics would force a return to difficult questions about the true nature of the interpretant sign in the general theory of sign relations. It is best to defer these issues to a later discussion. Fortunately, omission of this material does not interfere with understanding the purely formal aspects of the present example.

Formally, these new aspects of semantics present no additional problem:

The connotative component of a sign relation L can be formalized as its dyadic projection on the plane generated by the sign domain and the interpretant domain, defined as follows:

Con(L) = ProjSI L = LSI = {‹si› ∈ S × I : ‹osi› ∈ L for some oO}.

The intentional component of semantics for a sign relation L, or its second moment of denotation, is adequately captured by its dyadic projection on the plane generated by the object domain and interpretant domain, defined as follows:

Int(L) = ProjOI L = LOI = {‹oi› ∈ O × I : ‹osi› ∈ L for some sS}.

As it happens, the sign relations LA and LB in the present example are fully symmetric with respect to exchanging signs and interpretants, so all of the structure of (LA)OS  and (LB)OS  is merely echoed in (LA)OI  and (LB)OI , respectively.

Note on notation. When there is only one sign relation LJ  = L(J) associated with a given interpreter J, it is convenient to use the following forms of abbreviation:

JOS = Den(LJ ) = ProjOS LJ = (LJ )OS = L(J)OS
JSI = Con(LJ ) = ProjSI LJ = (LJ )SI = L(J)SI
JOI = Int(LJ ) = ProjOI LJ = (LJ )OI = L(J)OI

The principal concern of this project is not with every conceivable sign relation but chiefly with those that are capable of supporting inquiry processes. In these, the relationship between the connotational and the denotational aspects of meaning is not wholly arbitrary. Instead, this relationship must be naturally constrained or deliberately designed in such a way that it:

  1. Represents the embodiment of significant properties that have objective reality in the agent's domain.
  2. Supports the achievement of particular purposes that have intentional value for the agent.

Therefore, my attention is directed mainly toward understanding the forms of correlation, coordination, and cooperation among the various components of sign relations that form the necessary conditions for carrying out coherent inquiries.

1.3.4.3. Semiotic Equivalence Relations

If one examines the sign relations LA and LB that are associated with the interpreters A and B, respectively, one observes that they have many contingent properties that are not possessed by sign relations in general. One nice property possessed by the sign relations LA and LB is that their connotative components ASI  and BSI  constitute a pair of equivalence relations on their common syntactic domain S = I. It is convenient to refer to such structures as semiotic equivalence relations (SER's) since they equate signs that mean the same thing to somebody. Each of the SER's, ASI , BSI  ⊆ S × I = S × S partitions the whole collection of signs into semiotic equivalence classes (SEC's). This makes for a strong form of representation in that the structure of the participants' common object domain is reflected or reconstructed, part for part, in the structure of each of their semiotic partitions (SEP's) of the syntactic domain.

The main trouble with this notion of semantics in the present situation is that the two semiotic partitions for A and B are not the same, indeed, they are orthogonal to each other. This makes it difficult to interpret either one of the partitions or equivalence relations on the syntactic domain as corresponding to any sort of objective structure or invariant reality, independent of the individual interpreter's point of view (POV).

Information about the different forms of semiotic equivalence induced by the interpreters A and B is summarized in Tables 3 and 4. The form of these Tables should suffice to explain what is meant by saying that the SEP's for A and B are orthogonal to each other.

Table 3. Semiotic Partition of Interpreter A
"A" "i"
"u" "B"


Table 4. Semiotic Partition of Interpreter B
"A"
"u"
"i"
"B"


To discuss these types of situations further, I introduce the square bracket notation "[x]E" for "the equivalence class of the element x under the equivalence relation E". A statement that the elements x and y are equivalent under E is called an equation, and can be written in either one of two ways, as [x]E = [y]E or as x =E y.

In the application to sign relations I extend this notation in the following ways. When L is a sign relation whose syntactic projection or connotative component LSI is an equivalence relation on S, I write "[s]L" for "the equivalence class of s under LSI". A statement that the signs x and y are synonymous under a semiotic equivalence relation LSI is called a semiotic equation (SEQ), and can be written in either of the forms: [x]L = [y]L or as x =L y.

In many situations there is one further adaptation of the square bracket notation that can be useful. Namely, when there is known to exist a particular triple ‹o, s, i› ∈ L, it is permissible to use "[o]L" to mean the same thing as "[s]L". These modifications are designed to make the notation for semiotic equivalence classes harmonize as well as possible with the frequent use of similar devices for the denotations of signs and expressions.

In these terms, the SER for interpreter A yields the semiotic equations:

  ["A"]A = ["i"]A , ["B"]A = ["u"]A ,
or "A" =A "i" , "B" =A "u" ,

and the semiotic partition: {{"A", "i"}, {"B", "u"}}.

In contrast, the SER for interpreter B yields the semiotic equations:

  ["A"]B = ["u"]B , ["B"]B = ["i"]B ,
or "A" =B "u" , "B" =B "i" ,

and the semiotic partition: {{"A", "u"}, {"B", "i"}}.

1.3.4.4. Graphical Representations

The dyadic components of sign relations can be given graph-theoretic representations, as digraphs (or directed graphs), that provide concise pictures of their structural and potential dynamic properties.

By way of terminology, a directed edge ‹xy› is called an arc from point x to point y, and a self-loop ‹xx› is called a sling at x.

The denotative components Den(A) and Den(B) can be represented as digraphs on the six points of their common world set W = O ∪ S ∪ I = {AB, "A", "B", "i", "u"}. The arcs are given as follows:

  1. Den(A) has an arc from each point of {"A", "i"} to A and from each point of {"B", "u"} to B.
  2. Den(B) has an arc from each point of {"A", "u"} to A and from each point of {"B", "i"} to B.

Den(A) and Den(B) can be interpreted as transition digraphs that chart the succession of steps or the connection of states in a computational process. If the graph is read this way, the denotational arcs summarize the upshots of the computations that are involved when the interpreters A and B evaluate the signs in S according to their own frames of reference.

The connotative components Con(A) and Con(B) can be represented as digraphs on the four points of their common syntactic domain S = I = {"A", "B", "i", "u"}. Since Con(A) and Con(B) are SER's, their digraphs conform to the pattern that is manifested by all digraphs of equivalence relations. In general, a digraph of an equivalence relation falls into connected components that correspond to the parts of the associated partition, with a complete digraph on the points of each part, and no other arcs. In the present case, the arcs are given as follows:

  1. Con(A) has the structure of a SER on S, with a sling at each of the points in S, two-way arcs between the points of {"A", "i"}, and two-way arcs between the points of {"B", "u"}.
  2. Con(B) has the structure of a SER on S, with a sling at each of the points in S, two-way arcs between the points of {"A", "u"}, and two-way arcs between the points of {"B", "i"}.

Taken as transition digraphs, Con(A) and Con(B) highlight the associations that are permitted between equivalent signs, as this equivalence is judged by the interpreters A and B, respectively.

The theme running through the last three subsections, that associates different interpreters and different aspects of interpretation with different sorts of relational structures on the same set of points, heralds a topic that will be developed extensively in the sequel.

1.3.4.5. Taking Stock

So far, my discussion of the discussion between A and B, in the picture that it gives of sign relations and their connection to the imagined processes of interpretation and inquiry, can best be described as fragmentary. In the story of A and B, a sample of typical language use has been drawn from the context of informal discussion and partially formalized in the guise of two independent sign relations, but no unified conception of the commonly understood interpretive practices in such a situation has yet been drafted.

It seems like a good idea to pause at this point and reflect on the state of understanding that has been reached. In order to motivate further developments it will be useful to inventory two types of shortfall in the present state of discussion, the first having to do with the defects of my present discussion in revealing the relevant attributes of even so simple an example as the one I used to begin, the second having to do with the defects that this species of example exhibits within the genus of sign relations it is intended to illustrate.

As a general schema, I describe these respective limitations as the rhetorical and the objective defects that a discussion can have in addressing its intended object. The immediate concern is to remedy the insufficiencies of analysis that affect the treatment of the current case. The overarching task is to address the atypically simplistic features of this example as it falls within the class of sign relations that are relevant to actual inquiry.

The next few subsections will be concerned with the most problematic features of the A and B dialogue, especially with the sorts of difficulties that are clues to significant deficits in theory and technique, and that point out directions for future improvements.

1.3.4.6. The "Meta" Question

There is one point of common contention that I finessed from play in my handling of the discussion between A and B, even though it lies in plain view on both their Tables. This is the troubling business, recalcitrant to analysis precisely because its operations race on so heedlessly ahead of thought and grind on so routinely beneath its notice, that concerns the placement of object languages within the frame of a meta-language. Numerous bars to insight appear to interlock here. Each one is forged with a good aim in mind, if a bit single-minded in its coverage of the scene, and the whole gang is set to work innocently enough in the unavoidable circumstances of informal discussion. But a failure to absorb their amalgamated impact on the figurative representations and the analytic intentions of sign relations can lead to several types of false impression, both about the true characters of the tables presented here and about the proper utilities of their graphical equivalents to be implemented as data structures in the computer. The next few remarks are put forth in hopes of averting these brands of misreading.

The general character of this question can be expressed in the schematic terms that were used earlier to give a rough sketch of the modeling activity as a whole. How do the isolated SOI's of A and B relate to the interpretive framework that I am using to present them, and how does this IF operate, not only to objectify A and B as models of interpretation (MOI's), but simultaneously to embrace the present and the prospective SOI's of the current narrative, the implicit systems of interpretation that embody in turn the initial conditions and the final intentions of this whole discussion?

One way to see how this issue arises in the discussion of A and B is to recognize that each table of a sign relation is a complex sign in itself, each of whose syntactic constituents plays the role of a simpler sign. In other words, there is nothing but text to be seen on the page. In comparison to what it represents, the table is like a sign relation that has undergone a step of semantic ascent. It is as if the entire contents of the original sign relation have been transposed up a notch on the scale that registers levels of indirectness in reference, each item passing from a more objective to a more symbolic mode of presentation.

Sign relations themselves, like any real objects of discussion, are either too abstract or too concrete to reside in the medium of communication, but can only find themselves represented there. The tables and graphs that are used to represent sign relations are themselves complex signs, involving a step of denotation to reach the sign relation intended. The intricacies of this step demand interpretive agents who are able, over and above executing all the rudimentary steps of denotation, to orchestrate the requisite kinds of concerted steps. This performance in turn requires a whole array of techniques to match the connotations of complex signs and to test their alternative styles of representation for semiotic equivalence. Analogous to the ways that matrices represent linear transformations and that multiplication tables represent group operations, a large part of the usefulness of these complex signs comes from the fact that they are not just conventional symbols for their objects but iconic representations of their structure.

1.3.4.7. Iconic Signs

In the pragmatic theory of signs, an icon is a sign that accomplishes its representation, including the projects of denotation and connotation, by virtue of properties that it shares with its object. In the case of relational tables and graphs, interpreted as iconic representations or analogous expressions of logical and mathematical objects, the pivotal properties are formal and abstract in character. Since a uniform translation through any dimension (of sight, of sound, or imagination) does not affect the structural properties of a configuration of signs in relation to each other, this may help to explain how tables and graphs, in spite of their semantic shiftiness, can succeed in representing sign relations without essential distortion.

Taking this unsuspecting introduction of iconic signs as a serendipitous lesson, an important principle can be lifted from their style of success. They bring the search for models of intellectual processes to look for classes of representation that do not lean too heavily on local idioms for devising labels but rather suspend their abstract formal structures in qualities of media that can best be preserved through a wide variety of global transformations. In time these ventures will lead this project to contemplate various forms of graphical abstraction as supplying possibly the most solid sites for pouring the foundations of formal expression.

What does appear in one of these Tables? It is not the objects that appear under the Object heading, but only the signs of these objects. It is not even the signs and interpretants themselves that appear under the Sign and Interpretant headings, but only the remoter signs of them that are formed by quotation. The unformalized sign relation in which these signs of objects, signs of signs, and signs of interpretants have their role as such is not the one Tabled, but another one that operates behind the scenes to bring its image and intent to the reader.

To understand what the Table is meant to convey the reader has to participate in the informal and more accessory sign relation in order to follow its indications to the intended and more accessible sign relation. As logical or mathematical objects, the sign relations A and B do not exist in the medium of their Tables but are represented there by dint of the relevant structural properties that they share with these Tables. As fictional characters, the interpretive agents A and B do not exist in a uniquely literal sense but serve as typical literary figures to convey the intended formal account, standing in for concrete experiences with language use the likes of which are familiar to writer and reader alike.

The successful formalization of a focal sign relation cannot get around its reliance on prior forms of understanding, like the raw ability to follow indications whose components of competence are embodied in the vaster and largely unarticulated context of a peripheral sign relation. But the extent to which the analysis of a formal sign relation depends on a particular context or a particular interpreter is the extent to which an opportunity for understanding is undermined by a prior petition of the very principles to be explained. Thus, there is little satisfaction in special pleadings or ad hoc accounts of interpretive practice that cannot be transported across a multitude of contexts, media, and interpreters.

What does all this mean, in concrete form, for the proper appreciation of the present example? And looking beyond that, what does it mean in terms of concrete activities that need to be tackled by this work?

One task is to eliminate several types of formal confound that currently affect this investigation. Even though there is an essential tension to be maintained down the lines between casual and formal discussion, the traffic across these realms needs to be monitored carefully. There are identifiable sources of confusion that devolve from the context of informal discussion and invade the arena of formal study, subverting its necessary powers of reflection and undermining its overall effectiveness.

One serious form of contamination can be traced to the accidental circumstance that A and B and I all use the same proper names for A and B. This renders it is impossible to tell, purely from the tokens that are being tendered, whether it is a formal or a casual transaction that forms the issue of the moment. It also means that a formalization of the writer's and the reader's accessory sign relations would have several portions that look identical to pieces of those Tables under formal review.

1.3.4.8. The Conflict of Interpretations

One discrepancy that needs to be documented can be observed in the conflict of interpretations between A and B, as reflected in the lack of congruity between their semiotic partitions of the syntactic domain. This is a problematic but realistic feature of the present example. That is, it represents a type of problem with the interpretation of pronouns (indexical signs or bound variables) that actually arises in practice when attempting to formalize the semantics of natural, logical, and programming languages. On this account, the deficiency resides with the present analysis, and the burden remains to clarify exactly what is going on here.

Notice, however, that I have deliberately avoided dealing with indexical tokens in the usual ways, namely, by seeking to eliminate all semantic ambiguities from the initial formalization. Instead, I have preserved this aspect of interpretive discrepancy as one of the essential phenomena or inescapable facts in the realm of pragmatic semantics, tantamount to the irreducible nature of perspective diversity. I believe that the desired competence at this faculty of language will come, not from any strategy of substitution that constantly replenishes bound variables with their objective referents on every fixed occasion, but from a pattern of recognition that keeps indexical signs persistently attached to their interpreters of reference.

1.3.4.9. Indexical Signs

In the pragmatic theory of signs, an index is a sign that achieves its representation of an object by virtue of an actual connection with it. Though real and objective, however, the indexical connection can be purely incidental and even a bit accidental. Its effectiveness depends only on the fact that an object in actual existence has many properties, definitive and derivative, any number of which can serve as its signs. Indices of an object reside among its more tangential sorts of attributes, its accidental or accessory features, which are really the properties of some but not all points in the locus of its existential actualization.

Pronouns qualify as indices because their objective references cannot be traced without recovering further information about their actual context, not just their objective and syntactic contexts but the pragmatic context involved in their actualizing situation of use (SOU) or their realizing instance of use (IOU). To fulfill their duty to sense the reading of indices demands to be supplemented by a more determinate indication of their interpreter of reference, the agent that is responsible for putting them into active use at the moment in question.

Typical examples of indexical signs in programming languages are: (1) variables, signs that need to be bound to a syntactic context or an instantiation frame in order to have a determinate meaning, and (2) pointers, signs that serve particular interpreters operating relative to locally active environments as accessory addresses of modifiable memory contents. In any case something extra — some further information about the objective, syntactic, or interpretive context — must be added to the index in order to tell what it denotes.

If a real object can be regarded as a generic and permanent property that is shared by all of its specific and momentary instantiations, then it is possible to re-characterize indexical signs in the following terms: An index of an object is a property of an actual instance of that object. It is in this sense that indices are said to have actual but not essential connections to what they denote.

Saying that an index is a property of an instance of an object almost makes it sound as though the relation of an index to what it denotes could be defined in purely objective terms, as a product of the two dyadic relations, property of and instance of, and independently of any particular interpreter. But jumping to this conclusion would only produce an approximation to the truth, or a likely story, one that provokes the rejoinders: In whose approach? or Likely to whom?

Taking up these challenges provides a clue as to how a sign relation can appear to be nearly objective, moderately independent, or relatively composite, all within the medium of a particular framework for analysis and interpretation. Careful inspection of the context of definition reveals that it is not really the supposedly frame-free relations of properties and instances that suffice to compose the indexical connection. It is not enough that the separate links exist in principle to make something a property of an instance of something. In order to constitute a genuine sign relation, indexical or otherwise, each link must be recognized to exist by one and the same interpreter.

From this point of view, the object is considered to be something in the external world and the index is considered to be something that touches on the interpreter's experience, both of which subsume, though perhaps in different senses, the object instance (OI) that mediates their actual connection. Although the respective subsumptions, of OI to object and of OI to index, can appear to fall at first glance only within the reach of divergent senses, both must appeal for their eventual realization to a common sense, one that rests within the grasp of a single interpreter. Apparently then, the object instance is the sort of entity that can contribute to generating both the object and the experience, in this way connecting the diverse abstractions called objects and indices.

If a suitable framework of object instances can be found to rationalize an interpreter's experience with objects, then the actual connection that subsists between an object and its index becomes in this framework precisely the connection that exists between two properties of the same object instance, or between two sets intersecting in a common element. Relative to the appropriate framework, the actual connections needed to explain a global indexing operation can be identified, point for point, with the collective function of those joint instances or common elements.

At this stage of analysis, what were originally regarded as real objects have become hypostatic abstractions, extended as generic entities over classes of more transient objects, their instantiating actualizations. In this setting, a real object is now analogous to an extended property or a generative predicate, whose extension generates the trajectory of its momentary instances or the locus of its points in actual existence.

Persisting in this form of analysis appears to lead discussion to levels of existence that are in one way or another more real, more determinate, in a word, more objective than its original objects. If only a particular way of pursuing this form of analysis could be established as reaching a truly fundamental level of existence, then reason could not object to speaking of objects of objects, and even invoking the ultimate objects of objects, meaning the unique atoms at the base of the hierarchy that is formed by the descent of objects.

However, experience leads me to believe that forms of analysis are too peculiar to persons and communities, too dependent on their particular experiences and traditions, and overall too much bound to interpretive constitutions of learning and culture to ever be justly established as invariants of nature. In the end, or rather, by way of appeal to the many courts of final opinion, to invoke any particular form of analysis, no matter whether it is baseless or well-founded, is just another way of referring judgment to a particular interpreter, a contingent IF or a self-serving SOI. Consequently, every form of arbitration retains an irreducibly arbitrary element, and the best policy remains what it has always been, to maintain an honest index of that fact. Therefore, I consider any supposed form of ontological descent to be, more likely, just one among many possible forms of semantic descent, each one of which details a particular way to reformulate objects as signs of more determinate objects, and every one of which operates with respect to its assumed form of analysis or its tacit analytic framework.

1.3.4.10. Sundry Problems

There are moments in the development of an analytic discussion when a thing initially described as a single object under a single sign needs to be reformulated as a congeries extending over more determinate objects. If the usage of the original singular sign is preserved, as it often is, then the multitude of new instances that one comes to fathom beneath the old object's superficial appearance gradually serve to reconstitute the singular sign's denotation in the fashion of a plural reference.

One such moment was reached in the preceding subsection, where the topics opened up by indexical signs invited the discussion to begin addressing much wider areas of concern. Eventually, to account for the effective operation of indexical signs I will have to invoke the concept of a real object and pursue the analysis of ostensible objects in terms of still more objective things. These are the extended multitudes of increasingly determinate objects that I will variously refer to as the actualizations, instantiations, realizations, etc. of objects, and on occasion (and not without reason) the objects of objects (OOO's).

Another such moment will arrive when I turn to developing suitable embodiments of sign relations within dynamically realistic systems. In order to implement interpreters as state transition systems, I will have to justify the idea that dynamic states are the real signs and proceed to reconstitute the customary types of signs as abstractions from still more significant tokens. These are the immediate occasions of sign-using transactions that I will tender as situations of use (SOU's) or instances of use (IOU's), plus the states and motions of dynamic systems that solely are able to realize these uses and discharge the obligations they incur to reality.

In every case, working within the framework of systems theory will lead this discussion toward systems and conditions of systems as the ultimate objects of investigation, implicated as the ends of both synthetic and analytic proceedings. Sign relations, initially formulated as relations among three arbitrary sets, will gradually have their original substrates replaced with three systems, the object, sign, and interpretant systems.

Since the roles of a sign relation are formally and pragmatically defined, they do not depend on the material aspects or the essential attributes of elements or domains. Therefore, it is conceivable that the very same system could appear in all three roles, and from this possibility arises much of the ensuing complications of the subject.

A related source of conceptual turbulence stems from the circumstance that, even though a certain aesthetic dynamics attracts the mind toward sign relational systems that are capable of reflecting on, commenting on, and thus counter-rolling their own behavior, it is still important to distinguish in every active instance the part of the system that is doing the discussing from the part of the system that is being discussed. To do this, interpreters need two things: (1) the senses to discern the essential tensions that typically prevail between the formal pole and the informal arena, and (2) the language to articulate, aside from their potential roles, the moment by moment placement of dynamic elements and systematic components with respect to this field of polarities.

1.3.4.11. Review and Prospect

What has been learned from the foregoing study of icons and indices? The import of this examination can be sized up in two stages, at first, by reflecting on the action of both the formal and the casual signs that were found to be operating in and around the discussion of A and B, and then, by taking up the lessons of this circumscribed arena as a paradigm for future investigation.

In order to explain the operation of sign relations corresponding to iconic and indexical signs in the A and B example, it becomes necessary to refer to potential objects of thought that are located, if they exist at all, outside the realm of the initial object set, that is, lying beyond the objects of thought present at the outset of discussion that one initially recognizes as objects of formally identified signs. In particular, it is incumbent on a satisfying explanation to invoke the abstract properties of objects and the actual instances of objects, where these properties and instances are normally assumed to be new objects of thought that are distinct from the objects to which they refer.

In the pragmatic account of things, thoughts are just signs in the mind of their thinker, so every object of a thought is the object of a sign, though perhaps in a sign relation that has not been fully formalized. Considered on these grounds, the search for a satisfactory context in which to explain the actions and effects of signs turns into a recursive process that potentially calls on ever higher levels of properties and ever deeper levels of instances that are found to stem from whatever objects instigated the search.

To make it serve as a paradigm for future developments, I repeat the basic pattern that has been observed with a slightly different emphasis. In order to explain the operation of icons and indices in a particular discussion, it is necessary to invoke the abstract properties of objects and the actual instances of objects, where by objects one initially comprehends a limited collection of objects of thought under discussion. If these properties and instances are themselves regarded as potential objects of thought, and if they are conceived to be definitively other than the objects whose properties and instances they happen to be, then every initial collection of objects is forced to expand on further consideration, in this way pointing to a world of objects of thought that extends in two directions beyond the originating frame of discussion.

Can this manner of recursively searching for explanation be established as well-founded? In order to organize the expanding circle of thoughts and the growing wealth of objects that are envisioned within its scheme, it helps to introduce a set of organizing conceptions. Doing this will be the business of the next four Subsections.

1.3.4.12. Objective Plans and Levels

In accounting for the special characters of icons and indices that arose in previous discussions, it was necessary to open the domain of objects coming under formal consideration to include unspecified numbers of properties and instances of whatever objects were initially set down. This is a general phenomenon, affecting every motion toward explanation whether pursued by analytic or synthetic means. What it calls for in practice is a way of organizing growing domains of objects, without having to specify in advance all the objects there are.

This subsection presents the objective project (OP) that I plan to take up for investigating the forms of sign relations, and it outlines three objective levels (OL's) of formulation that guide the analytic and synthetic study of interpretive structure and regulate the prospective stages of implementing this plan in particular cases. The main purpose of these schematic conceptions is organizational, to provide a conceptual architecture for the burgeoning hierarchies of objects that arise in the generative processes of inquiry.

In the immediate context the objective project and the three levels of objective description are presented in broad terms. In the process of surveying a variety of problems that serve to instigate efforts in this general direction, I explore the prospects of a particular organon, or instrumental scheme for the analysis and synthesis of objects, that is intended to address these issues, and I give an overview of its design. In interpreting the sense of the word objective as it is used in this application, it may help to regard this objective project in the light of a telescopic analogy, with an objective being "a lens or system of lenses that forms an image of an object" (Webster's).

In the next three subsections after this one the focus returns to the separate levels of object structure, starting with the highest level of specification and treating the supporting levels in order of increasing detail. At each stage, the developing tools are applied to the analysis of concrete problems that arise in trying to clarify the structure and function of sign relations. For the present task, elaborations of this perspective are kept within the bounds of what is essential to deal with the example of A and B.

My use of the word object derives from the stock of the Greek root pragma, which captures all the senses needed to suggest the stability of concern and the dedication to purpose that are forever bound up in the constitution of objects and the institution of objectives. What it implies is that every object, objective, or objectivity is always somebody's object, objective, or objectivity.

In other words, objectivity is always a matter of interpretation. It is concerned with and quantified by the magnitude of the consensus that a matter is bound to have at the end of inquiry, but in no way does this diminish or dismiss the fact that the fated determination is something on which any particular collection of current opinions are granted to differ. In principle, there begins to be a degree of objectivity as soon as something becomes an object to somebody, and the issue of whether this objective waxes or wanes in time is bound up with the number of observers that are destined to concur on it.

The critical question is not whether a thing is an object of thought and discussion, but what sort of thought and discussion it is an object of. How does one determine the character of this thought and discussion? And should this query be construed as a task of finding or of making? Whether it appeals to arts of acquisition, production, or discernment, and however one expects to decide or decode the conduct it requires, the character of the thought and discussion in view is sized up and riddled out in turn by looking at the whole domain of objects and the pattern of relations among them that it actively charts and encompasses. This makes what is usually called subjectivity a special case of what I must call objectivity, since the interpretive and perspectival elements are ab initio operative and cannot be eliminated from any conceivable form of discernment, including their own.

Consequently, analyses of objects and syntheses of objects are always analyses and syntheses to somebody. Both modes of approaching the constitutions of objects lead to the sorts of approximation that are appropriate to particular agents and able to be appropriated by whole communities of interpretation. By way of relief, on occasions when this motive of consistency hobbles discussion too severely, I will resort to using chimeras like object-analytic and object-synthetic, paying the price of biasing the constitution of objects in one direction or another.

In this project I would like to treat the difference between construction and deconstruction as being more or less synonymous with the contrast between synthesis and analysis, but doing this without the introduction of too much distortion requires the intervention of a further distinction. Therefore, let it be recognized that all orientations to the constitutions of objects can be pursued in both regimented and radical fashions. In the weaker senses of the terms, analysis and synthesis work within a preset and limited regime of objects, construing each object as being composed from a fixed inventory of stock constituents. In the stronger senses, contracting for the application of these terms places a more strenuous demand on the would-be construer.

A radical form of analysis, in order to discern the contrasting intentions in everything construed as an object, requires interpreters to leave or at least re-place objects within the contexts of their live acquaintance, to reflect on their own motives and motifs for construing and employing objects in the ways they do, and to deconstruct how their own aims and biases enter into the form and use of objects.

A radical form of synthesis, in order to integrate ideas and information devolving from entirely different frameworks of interpretation (FOI's), requires interpreters to reconstruct isolated concepts and descriptions on a mutually compatible basis and to use means of composition that can constitute a medium for common sensibilities.

Thus, the radical project in all of these directions demands forms of interpretation, analysis, synthesis that can reflect a measure of light on the initially unstated assumptions of their prospective agents.

The foregoing considerations lead up to the organizing conception of an objective framework (OF), in which objects can be analyzed into sets of constituent objects, perhaps proceeding recursively to some limiting level where the fundamental objects of thought are thought to rest. If an OF is felt to be completely unique and uniquely complete, then people tend to regard it as constituting a veritable ontology, but I will not be able to go that far. The recognition of plural and fallible perspectives that goes with pragmatic forms of thinking does not see itself falling into line any time soon with any one or only one ontology.

On the opposite score, there is no reason to deny the possibility that a unique and complete OF exists. Indeed, the hope that such a standpoint does exist often provides inquiry with a beneficial regulative principle or a heuristic hypothesis to work on. It merely happens, for the run of finitely informed creatures (FIC's) at any rate, that the existence of an ideal framework is something to be established after the fact, at least nearer toward the end of inquiry than the present time marks.

In this project, an OF embodies one or more objective genres (OG's), also called forms of analysis (FOA's) or forms of synthesis (FOS's), each of which delivers its own rendition of a great chain of being for all the objects under its purview. In effect, each OG develops its own version of an ontological hierarchy (OH), designed independently of the others to capture an aspect of structure in its objective domain.

For now, the level of an OF operates as a catch-all, giving the projected discussion the elbow room it needs to range over an unspecified variety of different OG's and to place the particular OG's of active interest in a running context of comparative evaluations and developmental options.

Any given OG can appear under the alias of a form of analysis (FOA) or a form of synthesis (FOS), depending on the direction of prevailing interest. A notion frequently invoked for the same purpose is that of an ontological hierarchy (OH), but I will use this only provisionally, and only so long as it is clear that alternative ontologies can always be proposed for the same space of objects.

An OG embodies many objective motives or objective motifs (OM's). If an OG constitutes a genus, or generic pattern of object structure, then the OM's amount to its specific and individual exemplars. Thus, an OM can appear in the guise of a particular instance, trial, or "run" of the general form of analytic or synthetic procedure that accords with the protocols of a given OG.

In order to provide a way of talking about objective points of view in general without having to specify a particular level, I will use the term objective concern (OC) to cover any individual OF, OG, or OM.

An OG, in its general way, or an OM, in its individual way, begins by relating each object in its purview to a unique set of further objects, called the components, constituents, effects, ingredients, or instances of that object with respect to that objective concern (OC). As long as discussion remains fixed to what is visible within the scope of a particular OC, the collected effects of each object in view constitute its active ingredients, supplying it with a unique decomposition that defines it to a degree sufficient for all purposes conceivable within that discussion.

Contemplated from an outside perspective, however, the status of these effects as the defining unique determinants (DUD's) of each object under examination is something to be questioned. The supposed constituents of an object that are obvious with respect to one OC can be regarded with suspicion from the points of view of alternative OC's, and their apparent status as rock-bottom substantives can find itself reconstituted in the guise of provisional placeholders (placebos or excipients) that precipitately index the potential operation of more subtly active ingredients.

If a single OG could be unique and the realization of every object in it could be complete, then there might be some basis for saying that the elements of objects and the extensions of objects are known, and thus that the very objects of objects (OOO's) are determined by its plan. In practice, however, it takes a diversity of overlapping and not entirely systematic OG's to make up a moderately useful OF.

What gives an OG a definite constitution is the naming of a space of objects that falls under its purview and the setting down of a system of axioms that affects its generating relations. What gives an OM a determinate character from moment to moment is the particular selection of objects and linkages from its governing OG that it can say it has appropriated, apprehended, or actualized, that is, the portion of its OG that it can say actually belongs to it, and whether they make up a lot or a little, the roles it can say it has made its own.

In setting out the preceding characterization, I have reiterated what is likely to seem like an anthropomorphism, prefacing each requirement of the candidate OM with the qualification it can say. This is done in order to emphasize that an OM's command of a share of its OG is partly a function of the interpretive effability that it brings to bear on the object domain and partly a matter of the expressive power that it is able to dictate over its own development.

1.3.4.13. Formalization of OF : Objective Levels

The three levels of objective detail to be discussed are referred to as the objective framework, genre, and motive that one finds actively involved in organizing, guiding, and regulating a particular inquiry.

  1. An objective framework (OF) consists of one or more objective genres (OG's), also called forms of analysis (FOA's), forms of synthesis (FOS's), or ontological hierarchies (OH's). Typically, these span a diverse spectrum of formal characteristics and intended interpretations.
  2. An OG is made up of one or more objective motives or objective motifs (OM's), sometimes regarded as particular instances of analysis (IOA's) or instances of synthesis (IOS's). All of the OM's governed by a particular OG exhibit a kinship of structures and intentions, and each OM roughly fits the pattern or follows in the footsteps of its guiding OG.
  3. An OM can be identified with a certain moment of interpretation, one in which a particular dyadic relation appears to govern all the objects in its purview. Initially presented as an abstraction, an individual OM is commonly fleshed out by identifying it with its interpretive agent. As this practice amounts to a very loose form of personification, it is subject to all the dangers of its type and is bound eventually to engender a multitude of misunderstandings. In contexts where more precision is needed it is best to recognize that the application of an OM is restricted to special instants and limited intervals of time. This means that an individual OM must look to the interpretive moment (IM) of its immediate activity to find the materials available for both its concrete instantiation and its real implementation. Finally, having come round to the picture of an objective motive realized in an interpretive moment, this discussion has made a discrete advance toward the desired forms of dynamically realistic models, providing itself with what begins to look like the elemental states and dispositions needed to build fully actualized systems of interpretation.

A major theoretical task that remains outstanding for this project is to discover a minimally adequate basis for defining the state of uncertainty that an interpretive system has with respect to the questions it is able to formulate about the state of an object system. Achieving this would permit a measure of definiteness to be brought to the question of inquiry's nature, since it can be grasped intuitively that the gist of inquiry is to reduce an agent's level of uncertainty about its object, objective, or objectivity through appropriate changes of state.

Accordingly, one of the roles intended for this OF is to provide a set of standard formulations for describing the moment to moment uncertainty of interpretive systems. The formally definable concepts of the MOI (the objective case of a SOI) and the IM (the momentary state of a SOI) are intended to formalize the intuitive notions of a generic mental constitution and a specific mental disposition that usually serve in discussing states and directions of mind.

The structures present at each objective level are formulated by means of converse pairs of staging relations, prototypically symbolized by the signs \(\lessdot\) and \(\gtrdot\). At the more generic levels of OF's and OG's the staging operations associated with the generators \(\lessdot\) and \(\gtrdot\) involve the application of dyadic relations analogous to class membership \(\in\!\) and its converse \(\ni\!\), but the increasing amounts of parametric information that are needed to determine specific motives and detailed motifs give OM's the full power of triadic relations. Using the same pair of symbols to denote staging relations at all objective levels helps to prevent an excessive proliferation of symbols, but it means that the meaning of these symbols is always heavily dependent on context. In particular, even fundamental properties like the effective arity of the relations signified can vary from level to level.

The staging relations divide into two orientations, \(\lessdot\) versus \(\gtrdot\), indicating opposing senses of direction with respect to the distinction between analytic and synthetic projects:

The standing relations, indicated by \(\lessdot\), are analogous to the element of or membership relation \(\in\!\). Another interpretation of \(\lessdot\) is the instance of relation. At least with respect to the more generic levels of analysis, any distinction between these readings is immaterial to the formal interests and structural objectives of this discussion.
The propping relations, indicated by \(\gtrdot\), are analogous to the class of relation or converse of the membership relation. An alternate meaning for \(\gtrdot\) is the property of relation. Although it is possible to maintain a distinction here, this discussion is mainly interested in a level of formal structure to which this difference is irrelevant.

Although it may be logically redundant, it is useful in practice to introduce efficient symbolic devices for both directions of relation, \(\lessdot\) and \(\gtrdot\), and to maintain a formal calculus that treats analogous pairs of relations on an equal footing. Extra measures of convenience come into play when the relations are used as assignment operations to create titles, define terms, and establish offices of objects in the active contexts of given relations. Thus, I regard these dual relationships as symmetric primitives and use them as the generating relations of all three objective levels.

Next, I present several different ways of formalizing objective genres and motives. The reason for employing multiple descriptions is to capture the various ways that these patterns of organization appear in practice.

One way to approach the formalization of an objective genre \(G\!\) is through an indexed collection of dyadic relations:

\(G = \{ G_j \} = \{ G_j : j \in J \}\ \text{with}\ G_j \subseteq P_j \times Q_j\ (\forall j \in J).\)

Here, \(J\!\) is a set of actual (not formal) parameters used to index the OG, while \(P_j\!\) and \(Q_j\!\) are domains of objects (initially in the informal sense) that enter into the dyadic relations \(G_j\!\).

Aside from their indices, many of the \(G_j\!\) in \(G\!\) can be abstractly identical to each other. This would earn \(G\!\) the designation of a multi-family or a multi-set, but I prefer to treat the index \(j\!\) as a concrete part of the indexed relation \(G_j\!\), in this way distinguishing it from all other members of the indexed family \(G\!\).

Ordinarily, it is desirable to avoid making individual mention of the separately indexed domains, \(P_j\!\) and \(Q_j\!\) for all \(j\!\) in \(J\!\). Common strategies for getting around this trouble involve the introduction of additional domains, designed to encompass all the objects needed in given contexts. Toward this end, an adequate supply of intermediate domains, called the rudiments of universal mediation, can be defined as follows:

\(X_j = P_j \cup Q_j,\) \(P = \textstyle \bigcup_j P_j,\) \(Q = \textstyle \bigcup_j Q_j.\)

Ultimately, all of these totalitarian strategies end the same way, at first, by envisioning a domain \(X\!\) that is big enough to encompass all the objects of thought that might demand entry into a given discussion, and then, by invoking one of the following conventions:

Rubric of Universal Inclusion\[X = \textstyle \bigcup_j (P_j \cup Q_j).\]
Rubric of Universal Equality\[X = P_j = Q_j\ (\forall j \in J).\]

Working under either of these assumptions, \(G\!\) can be provided with a simplified form of presentation:

\(G = \{ G_j \} = \{ G_j : j \in J \}\ \text{with}\ G_j \subseteq X \times X\ (\forall j \in J).\)

However, it serves a purpose of this project to preserve the individual indexing of relational domains for while longer, or at least to keep this usage available as an alternative formulation. Generally speaking, it is always possible in principle to form the union required by the universal inclusion convention, or without loss of generality to assume the equality imposed by the universal equality convention. The problem is that the unions and equalities invoked by these rubrics may not be effectively definable or testable in a computational context. Further, even when these sets or tests can be constructed or certified by some computational agent or another, the pertinent question at any interpretive moment is whether each collection or constraint is actively being apprehended or warranted by the particular interpreter charged with responsibility for it by the indicated assignment of domains.

But an overall purpose of this formalism is to represent the objects and constituencies known to specific interpreters at definite moments of their interpretive proceedings, in other words, to depict the information about objective existence and constituent structure that is possessed, recognized, responded to, acted on, and followed up by concrete agents as they move through their immediate contexts of activity. Accordingly, keeping individual tabs on the relational domains \(P_j\!\) and \(Q_j\!\), though it does not solve this array of problems, does serve to mark the concern with particularity and to keep before the mind the issues of individual attention and responsibility that are appropriate to interpretive agents. In short, whether or not domains appear with explicit subscripts, one should always be ready to answer Who subscribes to these domains?

It is important to emphasize that the index set \(J\!\) and the particular attachments of indices to dyadic relations are part and parcel to \(G\!\), befitting the concrete character intended for the concept of an objective genre, which is expected to realistically embody in the character of each \(G_j\!\) both a local habitation and a name. For this reason, among others, the \(G_j\!\) can safely be referred to as individual dyadic relations. Since the classical notion of an individual as a perfectly determinate entity has no application in finite information contexts, it is safe to recycle this term to distinguish the terminally informative particulars that a concrete index \(j\!\) adds to its thematic object \(G_j\!\).

Depending on the prevailing direction of interest in the genre \(G\!\), \(\lessdot\) or \(\gtrdot\), the same symbol is used equivocally for all the relations \(G_j\!\). The \(G_j\!\) can be regarded as formalizing the objective motives that make up the genre \(G\!\), provided it is understood that the information corresponding to the parameter \(j\!\) constitutes an integral part of the motive or motif of \(G_j\!\).

In this formulation, \(G\!\) constitutes ontological hierarchy of a plenary type, one that determines the complete array of objects and relationships that are conceivable and describable within a given discussion. Operating with reference to the global field of possibilities presented by \(G\!\), each \(G_j\!\) corresponds to the specialized competence of a particular agent, selecting out the objects and links of the generic hierarchy that are known to, owing to, or owned by a given interpreter.

Another way to formalize the defining structure of an objective genre can be posed in terms of a relative membership relation or a notion of relative elementhood. The constitutional structure of a particular genre can be set up in a flexible manner by taking it in two stages, starting from the level of finer detail and working up to the big picture:

  1. Each OM is constituted by what it means to be an object within it. What constitutes an object in a given OM can be fixed as follows:
    1. In absolute terms, by specifying the domain of objects that fall under its purview. For the present, I assume that each OM inherits the same object domain \(X\!\) from its governing OG.
    2. In relative terms, by specifying a converse pair of dyadic relations that (redundantly) determine two sets of facts:
      1. What is an instance, example, member, or element of what, relative to the OM in question.
      2. What is a property, quality, class, or set of what, relative to the OM in question.
  2. The various OM's of a particular OG can be unified under its aegis by means of a single triadic relation, one that names an OM and a pair of objects and that holds when one object belongs to the other in the sense identified by the relevant OM. If it becomes absolutely essential to emphasize the relativity of elements, one may resort to calling them relements, in this way jostling the mind to ask: Relement to what?

The last and perhaps the best way to form an objective genre \(G\!\) is to present it as a triadic relation:

\(G = \{ (j, p, q) \} \subseteq J \times P \times Q ,\)

or:

\(G = \{ (j, x, y) \} \subseteq J \times X \times X .\)

Given an objective genre \(G\!\) whose motives are indexed by a set \(J\!\) and whose objects form a set \(X\!\), there is a triadic relation among a motive and a pair of objects that exists when the first object belongs to the second object according to that motive. This is called the standing relation of the genre, and it can be taken as one way of defining and establishing the genre. In the way that triadic relations usually give rise to dyadic operations, the associated standing operation of the genre can be thought of as a brand of assignment operation that makes one object belong to another in a certain sense, namely, in the sense indicated by the designated motive.

There is a partial converse of the standing relation that transposes the order in which the two object domains are mentioned. This is called the propping relation of the genre, and it can be taken as an alternate way of defining the genre.

\(G\!\uparrow \ = \ \{(j, q, p) \in J \times Q \times P : (j, p, q) \in G \},\)

or:

\(G\!\uparrow \ = \ \{(j, y, x) \in J \times X \times X : (j, x, y) \in G \}.\)

The following conventions are useful for discussing the set-theoretic extensions of the staging relations and staging operations of an objective genre:

The standing relation of a genre is denoted by the symbol \(:\!\lessdot\), pronounced set-in, with either of the following two type-markings:

\(:\!\lessdot\ \subseteq\ J \times P \times Q,\)
\(:\!\lessdot\ \subseteq\ J \times X \times X.\)

The propping relation of a genre is denoted by the symbol \(:\!\gtrdot\), pronounced set-on, with either of the following two type-markings:

\(:\!\gtrdot\ \subseteq\ J \times Q \times P,\)
\(:\!\gtrdot\ \subseteq\ J \times X \times X.\)

Often one's level of interest in a genre is purely generic. When the relevant genre is regarded as an indexed family of dyadic relations, \(G = \{ G_j \}\!\), then this generic interest is tantamount to having one's concern rest with the union of all the dyadic relations in the genre.

\(\textstyle \bigcup_J G = \textstyle \bigcup_j G_j = \{ (x, y) \in X \times X : (x, y) \in G_j\ (\exists j \in J) \}.\)

When the relevant genre is contemplated as a triadic relation, \(G \subseteq J \times X \times X\), then one is dealing with the projection of \(G\!\) on the object dyad \(X \times X\).

\(G_{XX} = \operatorname{proj}_{XX}(G) = \{ (x, y) \in X \times X : (j, x, y) \in G\ (\exists j \in J) \}.\)

On these occasions, the assertion that \((x, y)\!\) is in \(\cup_J G = G_{XX}\) can be indicated by any one of the following equivalent expressions:

\(G : x \lessdot y,\) \(x \lessdot_G y,\) \(x \lessdot y : G,\)
\(G : y \gtrdot x,\) \(y \gtrdot_G x,\) \(y \gtrdot x : G.\)

At other times explicit mention needs to be made of the interpretive perspective or individual dyadic relation that links two objects. To indicate that a triple consisting of a motive \(j\!\) and two objects \(x\!\) and \(y\!\) belongs to the standing relation of the genre, in symbols, \((j, x, y) \in\ :\!\lessdot\), or equally, to indicate that a triple consisting of a motive \(j\!\) and two objects \(y\!\) and \(x\!\) belongs to the propping relation of the genre, in symbols, \((j, y, x) \in\ :\!\gtrdot\), all of the following notations are equivalent:

\(j : x \lessdot y,\) \(x \lessdot_j y,\) \(x \lessdot y : j,\)
\(j : y \gtrdot x,\) \(y \gtrdot_j x,\) \(y \gtrdot x : j.\)

Assertions of these relations can be read in various ways, for example:


\(j : x \lessdot y\) \(j : y \gtrdot x\)
\(x \lessdot_j y\) \(y \gtrdot_j x\)
\(x \lessdot y : j\) \(y \gtrdot x : j\)
\(j\ \text{sets}\ x\ \text{in}\ y.\) \(j\ \text{sets}\ y\ \text{on}\ x.\)
\(j\ \text{makes}\ x\ \text{an instance of}\ y.\) \(j\ \text{makes}\ y\ \text{a property of}\ x.\)
\(j\ \text{thinks}\ x\ \text{an instance of}\ y.\) \(j\ \text{thinks}\ y\ \text{a property of}\ x.\)
\(j\ \text{attests}\ x\ \text{an instance of}\ y.\) \(j\ \text{attests}\ y\ \text{a property of}\ x.\)
\(j\ \text{appoints}\ x\ \text{an instance of}\ y.\) \(j\ \text{appoints}\ y\ \text{a property of}\ x.\)
\(j\ \text{witnesses}\ x\ \text{an instance of}\ y.\) \(j\ \text{witnesses}\ y\ \text{a property of}\ x.\)
\(j\ \text{interprets}\ x\ \text{an instance of}\ y.\) \(j\ \text{interprets}\ y\ \text{a property of}\ x.\)
\(j\ \text{contributes}\ x\ \text{to}\ y.\) \(j\ \text{attributes}\ y\ \text{to}\ x.\)
\(j\ \text{determines}\ x\ \text{an example of}\ y.\) \(j\ \text{determines}\ y\ \text{a quality of}\ x.\)
\(j\ \text{evaluates}\ x\ \text{an example of}\ y.\) \(j\ \text{evaluates}\ y\ \text{a quality of}\ x.\)
\(j\ \text{proposes}\ x\ \text{an example of}\ y.\) \(j\ \text{proposes}\ y\ \text{a quality of}\ x.\)
\(j\ \text{musters}\ x\ \text{under}\ y.\) \(j\ \text{marshals}\ y\ \text{over}\ x.\)
\(j\ \text{indites}\ x\ \text{among}\ y.\) \(j\ \text{ascribes}\ y\ \text{about}\ x.\)
\(j\ \text{imputes}\ x\ \text{among}\ y.\) \(j\ \text{imputes}\ y\ \text{about}\ x.\)
\(j\ \text{judges}\ x\ \text{beneath}\ y.\) \(j\ \text{judges}\ y\ \text{beyond}\ x.\)
\(j\ \text{finds}\ x\ \text{preceding}\ y.\) \(j\ \text{finds}\ y\ \text{succeeding}\ x.\)
\(j\ \text{poses}\ x\ \text{before}\ y.\) \(j\ \text{poses}\ y\ \text{after}\ x.\)
\(j\ \text{forms}\ x\ \text{below}\ y.\) \(j\ \text{forms}\ y\ \text{above}\ x.\)


In making these free interpretations of genres and motifs, one needs to read them in a logical rather than a cognitive sense. A statement like "\(j\!\) thinks \(x\!\) an instance of \(y\!\)" should be understood as saying that "\(j\!\) is a thought with the logical import that \(x\!\) is an instance of \(y\!\)", and a statement like "\(j\!\) proposes \(y\!\) a property of \(x\!\)" should be taken to mean that "\(j\!\) is a proposition to the effect that \(y\!\) is a property of \(x\!\)".

These cautions are necessary to forestall the problems of intentional attitudes and contexts, something I intend to clarify later on in this project. At present, I regard the well-known opacities of this subject as arising from the circumstance that cognitive glosses tend to impute an unspecified order of extra reflection to each construal of the basic predicates. The way I plan to approach this issue is through a detailed analysis of the cognitive capacity for reflective thought, to be developed to the extent possible in formal terms by using sign relational models.

By way of anticipating the nature of the problem, consider the following examples to illustrate the contrast between logical and cognitive senses:

  • In a cognitive context, if \(j\!\) is a considered opinion that \(S\!\) is true, and \(j\!\) is a considered opinion that \(T\!\) is true, then it does not have to automatically follow that \(j\!\) is a considered opinion that the conjunction \(S\ \operatorname{and}\ T\) is true, since an extra measure of consideration might conceivably be involved in cognizing the conjunction of \(S\!\) and \(T\!\).
  • In a logical context, if \(j\!\) is a piece of evidence that \(S\!\) is true, and \(j\!\) is a piece of evidence that \(T\!\) is true, then it follows by these very facts alone that \(j\!\) is a piece of evidence that the conjunction \(S\ \operatorname{and}\ T\) is true. This is analogous to a situation where, if a person \(j\!\) draws a set of three lines, \(AB,\!\) \(BC,\!\) and \(AC,\!\) then \(j\!\) has drawn a triangle \(ABC,\!\) whether \(j\!\) recognizes the fact on reflection and further consideration or not.

Some readings of the staging relations are tantamount to statements of (a possibly higher order) model theory. For example, consider the predicate \(P : J \to \mathbb{B}\) defined by the following equivalence:

\(P(j) \quad \Leftrightarrow \quad j\ \text{proposes}\ x\ \text{an instance of}\ y.\)

Then \(P\!\) is a proposition that applies to a domain of propositions, or elements with the evidentiary import of propositions, and its models are therefore conceived to be certain propositional entities in \(J\!\). And yet all of these expressions are just elaborate ways of stating the underlying assertion which says that there exists a triple \((j, x, y)\!\) in the genre \(G (:\!\lessdot)\).

1.3.4.14. Application of OF : Generic Level

Given an ontological framework that can provide multiple perspectives and moving platforms for dealing with object structure, in other words, that can organize diverse hierarchies and developing orders of objects, attention can now return to the discussion of sign relations as models of intellectual processes.

A principal aim of using sign relations as formal models is to be capable of analyzing complex activities that arise in nature and human domains. Proceeding by the opportunistic mode of analysis by synthesis, one generates likely constructions from a stock of favored, familiar, and well-understood sign relations, the supply of which hopefully grows with time, constantly matching their formal properties against the structures encountered in the "wilds" of natural phenomena and human conduct. When salient traits of both the freely generated products and the widely gathered phenomena coincide in enough points, then the details of the constructs one has built for oneself can help to articulate a plausible hypothesis as to how the observable appearances might be explained.

A principal difficulty of using sign relations for this purpose arises from the very power of productivity they bring to bear in the process, the capacity of triadic relations to generate a welter of what are bound to be mostly arbitrary structures, with only a scattered few hoping to show any promise, but the massive profusion of which exceeds from the outset any reason's ability to sort them out and test them in practice. And yet, as the phenomena of interest become more complex, the chances grow slimmer that adequate explanations will be found in any of the thinner haystacks. In this respect, sign relations inherit the basic proclivities of set theory, which can be so successful and succinct in presenting and clarifying the properties of already found materials and hard won formal insights, and yet so overwhelming to use as a tool of random exploration and discovery.

The sign relations of \(A\!\) and \(B\!\), though natural in themselves as far as they go, were nevertheless introduced in an artificial fashion and presented by means of arbitrary stipulations. Sign relations that arise in more natural settings usually have a rationale, a reason for being as they are, and therefore become amenable to classification on the basis of the distinctive characters that make them what they are.

Consequently, naturally occurring sign relations can be expected to fall into species or natural kinds, and to have special properties that make them keep on occurring in nature. Moreover, cultivated varieties of sign relations, the kinds that have been converted to social purposes and found to be viable in actual practice, will have identifiable and especially effective properties by virtue of which their signs are rendered significant.

In the pragmatic theory of sign relations, three natural kinds of signs are recognized, under the names of icons, indices, and symbols. Examples of indexical or accessional signs figured significantly in the discussion of \(A\!\) and \(B\!\), as illustrated by the pronouns "i" and "u" in \(S.\!\) Examples of iconic or analogical signs were also present, though keeping to the background, in the very form of the sign relation Tables that were used to schematize the whole activity of each interpreter. Examples of symbolic or conventional signs, of course, abide even more deeply in the background, pervading the whole context and making up the very fabric of this discussion.

In order to deal with the array of issues presented so far in this subsection, all of which have to do with controlling the generative power of sign relations to serve the specific purposes of understanding, I apply the previously introduced concept of an objective genre (OG). This is intended to be a determinate purpose or a deliberate pattern of analysis and synthesis that one can identify as being active at given moments in a discussion and that affects what one regards as the relevant structural properties of its objects.

In the remainder of this subsection the concept of an OG is used informally, and only to the extent needed for a pressing application, namely, to rationalize the natural kinds that are claimed for signs and to clarify an important contrast that exists between icons and indices.

The OG I apply here is called the genre of properties and instances. One moves through its space, higher and lower in a particular ontology, by means of two dyadic relations, upward by taking a property of and downward by taking an instance of whatever object initially enters one's focus of attention. Each object of this OG is reckoned to be the unique common property of the set of objects that lie one step below it, objects that are in turn reckoned to be instances of the given object.

Pretty much the same relational structures could be found in the genre or paradigm of qualities and examples, but the use of examples here is polymorphous enough to include experiential, exegetic, and executable examples. This points the way to a series of related genres, for example, the OG's of principles and illustrations, laws and existents, precedents and exercises, and on to lessons and experiences. All in all, in their turn, these modulations of the basic OG show a way to shift the foundations of ontological hierarchies toward bases in individual and systematic experience, and thus to put existentially dynamic rollers under the blocks of what seem to be essentially invariant pyramids.

Any object of these OG's can be contemplated in the light of two potential relationships, namely, with respect to its chances of being an object quality or an object example of something else. In future references, abbreviated notations like \(\operatorname{OG} (\operatorname{Prop}, \operatorname{Inst})\) or \(\operatorname{OG} = (\operatorname{Prop}, \operatorname{Inst})\) will be used to specify particular genres, giving the intended interpretations of their generating relations \(\{ \lessdot,\gtrdot \}.\)

With respect to this OG, I can now characterize icons and indices. Icons are signs by virtue of being instances of properties of objects. Indices are signs by virtue of being properties of instances of objects.

Because the initial discussion seems to flow more smoothly if I apply dyadic relations on the left, I formulate these definitions as follows:

\(\begin{array}{llll} \text{For Icons:} & \operatorname{Sign} (\operatorname{Obj}) & = & \operatorname{Inst} (\operatorname{Prop} (\operatorname{Obj})). \\ \text{For Indices:} & \operatorname{Sign} (\operatorname{Obj}) & = & \operatorname{Prop} (\operatorname{Inst} (\operatorname{Obj})). \\ \end{array}\)

Imagine starting from the sign and retracing steps to reach the object, in this way finding the converses of these relations to be as follows:

\(\begin{array}{llll} \text{For Icons:} & \operatorname{Obj} (\operatorname{Sign}) & = & \operatorname{Inst} (\operatorname{Prop} (\operatorname{Sign})). \\ \text{For Indices:} & \operatorname{Obj} (\operatorname{Sign}) & = & \operatorname{Prop} (\operatorname{Inst} (\operatorname{Sign})). \\ \end{array}\)

In spite of the apparent duality between these patterns of composition, there is a significant asymmetry to be observed in the way that the insistent theme of realism interrupts the underlying genre. In order to understand this, it is necessary to note that the strain of pragmatic thinking I am using here takes its definition of reality from the word's original Scholastic sources, where the adjective real means having properties. Taken in this sense, reality is necessary but not sufficient to actuality, where actual means "existing in act and not merely potentially" (Webster's). To reiterate, actuality is sufficient but not necessary to reality. The distinction between the ideas is further pointed up by the fact that a potential can be real, and that its reality can be independent of any particular moment in which the power acts.

These abstract considerations would probably remain distant from the present concern, were it not for two points of connection:

  1. Relative to the present genre, the distinction of reality, that can be granted to certain objects of thought and not to others, fulfills an analogous role to the distinction that singles out sets among classes in modern versions of set theory. Taking the membership relation \(\in\!\) as a predecessor relation in a pre-designated hierarchy of classes, a class attains the status of a set, and by dint of this becomes an object of more determinate discussion, simply if it has successors. Pragmatic reality is distinguished from both the medieval and the modern versions, however, by the fact that its reality is always a reality to somebody. This is due to the circumstance that it takes both an abstract property and a concrete interpreter to establish the practical reality of an object.
  2. This project seeks articulations and implementations of intelligent activity within dynamically realistic systems. The individual stresses placed on articulation, implementation, actuality, dynamics, and reality collectively reinforce the importance of several issues:
  • Systems theory, consistently pursued, eventually demands for its rationalization a distinct ontology, in which states of being and modes of action form the principal objects of thought, out of which the ordinary sorts of stably extended objects must be constructed. In the "grammar" of process philosophy, verbs and pronouns are more basic than nouns. In its influence on the course of this discussion, the emphasis on systematic action is tantamount to an objective genre that makes dynamic systems, their momentary states and their passing actions, become the ultimate objects of synthesis and analysis. Consequently, the drift of this inquiry will be turned toward conceiving actions, as traced out in the trajectories of systems, to be the primitive elements of construction, more fundamental in this objective genre than stationary objects extended in space. As a corollary, it expects to find that physical objects of the static variety have a derivative status in relation to the activities that orient agents, both organisms and organizations, toward purposeful objectives.
  • At root, the notion of dynamics is concerned with power in the sense of potential. The brand of pragmatic thinking that I use in this work permits potential entities to be analyzed as real objects and conceptual objects to be constituted by the conception of their actual effects in practical instances. In the attempt to unify symbolic and dynamic approaches to intelligent systems (Upper and Lower Kingdoms?), there remains an insistent need to build conceptual bridges. A facility for relating objects to their actualizing instances and their instantiating actions lends many useful tools to an effort of this nature, in which the search for understanding cannot rest until each object and phenomenon has been reconstructed in terms of active occurrences and ways of being.
  • In prospect of form, it does not matter whether one takes this project as a task of analyzing and articulating the actualizations of intelligence that already exist in nature, or whether one views it as a goal of synthesizing and artificing the potentials for intelligence that have yet to be conceived in practice. From a formal perspective, the analysis and the synthesis are just reciprocal ways of tracing or retracing the same generic patterns of potential structure that determine actual form.

Returning to the examination of icons and indices, and keeping the criterion of reality in mind, notice the radical difference that comes into play in recursive settings between the two types of contemplated moves that are needed to trace the respective signs back to their objects, that is, to discover their denotations:

  1. Icon → Object. Taking the iconic sign as an initial instance, try to go up to a property and then down to a different or perhaps the same instance. This form of ascent does not require a distinct object, since reality of the sign is sufficient to itself. In other words, if the sign has any properties at all, then it is an icon of a real object, even if that object is only itself.
  2. Index → Object. Taking the indexical sign as an initial property, try to go down to an instance and then up to a different or perhaps the same property. This form of descent requires a real instance to substantiate it, but not necessarily a distinct object. Consequently, the index always has a real connection to its object, even if that object is only itself.

In sum: For icons a separate reality is optional, for indices a separate reality is obligatory. As often happens with a form of analysis, each term under the indicated sum appears to verge on indefinite expansion:

  1. For icons, the existence of a separate reality is optional. This means that the question of reality in the sign relation can depend on nothing more than the reality of each sign itself, on whether it has any property with respect to the OG in question. In effect, icons can rely on their own reality to faithfully provide a real object.
  2. For indices, the existence of a separate reality is obligatory. And yet this reality need not affect the object of the sign. In essence, indices are satisfied with a basis in reality that need only reside in an actual object instance, one that establishes a real connection between the object and its index with regard to the OG in question.

Finally, suppose that \(M\!\) and \(N\!\) are hypothetical sign relations intended to capture all the iconic and indexical relationships, respectively, that a typical object \(x\!\) enjoys within its genre \(G.\!\) A sign relation in which every sign has the same kind of relation to its object under an assumed form of analysis is appropriately called a homogeneous sign relation. In particular, if \(H\!\) is a homogeneous sign relation in which every sign has either an iconic or an indexical relation to its object, then it is convenient to apply the corresponding adjective to the whole of \(H\!.\)

Typical sign relations of the iconic or indexical kind generate especially simple and remarkably stable sorts of interpretive processes. In arity, they could almost be classified as approximately dyadic, since most of their interesting structure is wrapped up in their denotative aspects, while their connotative functions are relegated to the tangential role of preserving the directions of their denotative axes. In a metaphorical but true sense, iconic and indexical sign relations equip objective frameworks with "gyroscopes", helping them maintain their interpretive perspectives in a persistent orientation toward their objective world.

Of course, every form of sign relation still depends on the agency of a proper interpreter to bring it to life, and every species of sign process stays forever relative to the interpreters that actually bring it to term. But it is a rather special circumstance by means of which the actions of icons and indices are able to turn on the existence of independently meaningful properties and instances, as recognized within an objective framework, and this means that the interpretive associations of these signs are not always as idiosyncratic as they might otherwise be.

The dispensation of consensual bonds in a common medium leaves room for many individual interpreters to inhabit a shared frame of reference, and for a diversity of transient interpretive moments to take up and consolidate a continuing perspective on a world of mutual interests. This further increases the likelihood that differing and developing interpreters will become able to participate in compatible views and coherent values in relation to the aggregate of things, to collate information from a variety of sources, and to bring concerted action to bear on an appreciable distribution of extended realities and intended objectives. Instead of the disparities due to parallax leading to disorder and paralysis, accounting for the distinctive points of view behind the discrepancies can give rise to stereoscopic perspectives. In a community of interpretation and inquiry that has all these virtues, each individual try at objectivity is a venture that all the interpreters are nonetheless able to call their own.

Is this prospect a utopian vision? Perhaps it is exactly that. But it is the hope that inquiry discovers resting first and last within itself, quietly guiding every other aim and motive of inquiry.

Turning to the language of objective concerns, what can now be said about the compositional structures of the iconic sign relation \(M\!\) and the indexical sign relation \(N\!\)? In preparation for this topic, a few additional steps must be taken to continue formalizing the concept of an objective genre and to begin developing a calculus for composing objective motifs.

I recall the objective genre of properties and instances and re-introduce the symbols \(\lessdot\) and \(\gtrdot\) for the converse pair of dyadic relations that generate it. Reverting to the convention I employ in formal discussions of applying relational operators on the right, it is convenient to express the relative terms "property of \(x\!\)" and "instance of \(x\!\)" by means of a case inflection on \(x\!,\) that is, as "\(x\!\)’s property" and "\(x\!\)’s instance", respectively. Described in this way, \(\operatorname{OG} (\operatorname{Prop}, \operatorname{Inst}) = \langle \lessdot, \gtrdot \rangle,\) where:

\(\begin{array}{lllllll} x \lessdot & = & x \operatorname{'s~Property} & = & \operatorname{Property~of}\ x & = & \operatorname{Object~above}\ x. \\ x \gtrdot & = & x \operatorname{'s~Instance} & = & \operatorname{Instance~of}\ x & = & \operatorname{Object~below}\ x. \\ \end{array}\)

A symbol like \(^{\backprime\backprime} x \lessdot ^{\prime\prime}\) or \(^{\backprime\backprime} x \gtrdot ^{\prime\prime}\) is called a catenation, where \(^{\backprime\backprime} x ^{\prime\prime}\) is the catenand and \(^{\backprime\backprime} \lessdot ^{\prime\prime}\) or \(^{\backprime\backprime} \gtrdot ^{\prime\prime}\) is the catenator. Due to the fact that \(^{\backprime\backprime} \lessdot ^{\prime\prime}\) and \(^{\backprime\backprime} \gtrdot ^{\prime\prime}\) indicate dyadic relations, the significance of these so-called unsaturated catenations can be rationalized as follows:

\(\begin{array}{lllll} x \lessdot & = & x\ \operatorname{is~the~Instance~of~what?} & = & x \operatorname{'s~Property}. \\ x \gtrdot & = & x\ \operatorname{is~the~Property~of~what?} & = & x \operatorname{'s~Instance}. \\ \end{array}\)

In this fashion, the definitions of icons and indices can be reformulated:

\(\begin{array}{lllll} x \operatorname{'s~Icon} & = & x \operatorname{'s~Property's~Instance} & = & x \lessdot \gtrdot \\ x \operatorname{'s~Index} & = & x \operatorname{'s~Instance's~Property} & = & x \gtrdot \lessdot \\ \end{array}\)

According to the definitions of the homogeneous sign relations \(M\!\) and \(N,\!\) we have:

\(\begin{array}{lllll} x \operatorname{'s~Icon} & = & x \cdot M_{OS} \\ x \operatorname{'s~Index} & = & x \cdot N_{OS} \\ \end{array}\)

Equating the results of these equations yields the analysis of \(M\!\) and \(N\!\) as forms of composition within the genre of properties and instances:

\(\begin{array}{lllll} x \operatorname{'s~Icon} & = & x \cdot M_{OS} & = & x \lessdot \gtrdot \\ x \operatorname{'s~Index} & = & x \cdot N_{OS} & = & x \gtrdot \lessdot \\ \end{array}\)

On the assumption (to be examined more closely later) that any object \(x\!\) can be taken as a sign, the converse relations appear to be manifestly identical to the originals:

\(\begin{array}{llllll} \text{For Icons:} & x \operatorname{'s~Object} & = & x \cdot M_{SO} & = & x \lessdot \gtrdot \\ \text{For Indices:} & x \operatorname{'s~Object} & = & x \cdot N_{SO} & = & x \gtrdot \lessdot \\ \end{array}\)

Abstracting from the applications to an otiose \(x\!\) delivers the results:

\(\begin{array}{llllll} \text{For Icons:} & M_{OS} & = & M_{SO} & = & \lessdot \gtrdot \\ \text{For Indices:} & N_{OS} & = & N_{SO} & = & \gtrdot \lessdot \\ \end{array}\)

This appears to suggest that icons and their objects are icons of each other, and that indices and their objects are indices of each other. Are the results of these symbolic manipulations really to be trusted? Given that there is no mention of the interpretive agent to whom these sign relations are supposed to appear, one might well suspect that these results can only amount to approximate truths or potential verities.

1.3.4.15. Application of OF : Motive Level

Now that an adequate variety of formal tools have been set in order and the workspace afforded by an objective framework has been rendered reasonably clear, the structural theory of sign relations can be pursued with greater precision. In support of this aim, the concept of an objective genre and the particular example provided by \(\operatorname{OG} (\operatorname{Prop}, \operatorname{Inst})\) have served to rough out the basic shapes of the more refined analytic instruments to be developed in this subsection.

The notion of an objective motive or objective motif (OM) is intended to specialize or personalize the application of objective genres to take particular interpreters into account. For example, pursuing the pattern of \(\operatorname{OG} (\operatorname{Prop}, \operatorname{Inst}),\) a prospective OM of this genre does not merely tell about the properties and instances that objects can have in general, it recognizes a particular arrangement of objects and supplies them with its own ontology, giving "a local habitation and a name" to the bunch. What matters to an OM is a particular collection of objects (of thought) and a personal selection of links that go from each object (of thought) to higher and lower objects (of thought), all things being relative to a subjective ontology or a live hierarchy of thought, one that is currently known to and actively pursued by a designated interpreter of those thoughts.

The cautionary details interspersed at critical points in the preceding paragraph are intended to keep this inquiry vigilant against a constant danger of using ontological language, namely, the illusion that one can analyze the being of any real object merely by articulating the grammar of one's own thoughts, that is, simply by parsing signs in the mind. As always, it is best to regard OG's and OM's as filters and reticles, as transparent templates that are used to view a space, constituting the structures of objects only in one respect at a time, but never with any assurance of totality.

With these refinements, the use of dyadic projections to investigate sign relations can be combined with the perspective of objective motives to factor the facets or decompose the components of sign relations in a more systematic fashion. Given a homogeneous sign relation \(H\!\) of iconic or indexical type, the dyadic projections \(H_{OS}\!\) and \(H_{OI}\!\) can be analyzed as compound relations over the basis supplied by the \(G_j\!\) in \(G.\!\) As an application that is sufficiently important in its own right, the investigation of icons and indices continues to provide a useful testing ground for breaking in likely proposals of concepts and notation.

To pursue the analysis of icons and indices at the next stage of formalization, fix the OG of this discussion to have the type \(\langle \lessdot, \gtrdot \rangle\) and let each sign relation under discussion be articulated in terms of an objective motif that tells what objects and signs, plus what mediating linkages through properties and instances, are assumed to be recognized by its interpreter.

Let \(X\!\) collect the objects of thought that fall within a particular OM, and let \(X\!\) include the whole world of a sign relation plus everything needed to support and contain it. That is, \(X\!\) collects all the types of things that go into a sign relation, \(O \cup S \cup I = W \subseteq X,\) plus whatever else in the way of distinct object qualities and object exemplars is discovered or established to be generated out of this basis by the relations of the OM.

In order to keep this \(X\!\) simple enough to contemplate on a single pass but still make it deep enough to cover the issues of interest at present, I limit \(X\!\) to having just three disjoint layers of things to worry about:

The top layer is the relevant class of object qualities:
\(Q = X_0 \lessdot = W \lessdot\)
The middle layer is the initial collection of objects and signs:
\(X_0 = W\!\)
The bottom layer is a suitable set of object exemplars:
\(E = X_0 \gtrdot = W \gtrdot\)

Recall the reading of the staging relations:

\(h : x \lessdot m\) \(\Leftrightarrow\) \(h\ \operatorname{regards}\ x\ \operatorname{as~an~instance~of}\ m.\)
\(h : m \gtrdot y\) \(\Leftrightarrow\) \(h\ \operatorname{regards}\ m\ \operatorname{as~a~property~of}\ y.\)
\(h : x \gtrdot n\) \(\Leftrightarrow\) \(h\ \operatorname{regards}\ x\ \operatorname{as~a~property~of}\ n.\)
\(h : n \lessdot y\) \(\Leftrightarrow\) \(h\ \operatorname{regards}\ n\ \operatorname{as~an~instance~of}\ y.\)

Express the analysis of icons and indices as follows:

\(\text{For Icons:}\!\)   \(M_{OS}\!\) \(\colon\!\) \(x \lessdot \gtrdot x \operatorname{'s~Sign}.\)
\(\text{For Indices:}\!\)   \(N_{OS}\!\) \(\colon\!\) \(x \gtrdot \lessdot x \operatorname{'s~Sign}.\)

Let \(j\!\) and \(k\!\) be hypothetical interpreters that do the jobs of \(M\!\) and \(N,\!\) respectively:

\(\begin{array}{llllll} \text{For Icons:} & x \operatorname{'s~Sign} & = & x \cdot M_{OS} & = & x \lessdot_j \gtrdot_j \\ \text{For Indices:} & x \operatorname{'s~Sign} & = & x \cdot N_{OS} & = & x \gtrdot_k \lessdot_k \\ \end{array}\)

Factor out the names of the interpreters \(j\!\) and \(k\!\) to serve as identifiers of objective motifs:

\(\text{For Icons:}\!\)   \(j\!\) \(\colon\!\) \(x \lessdot \gtrdot x \operatorname{'s~Sign}.\)
\(\text{For Indices:}\!\)   \(k\!\) \(\colon\!\) \(x \gtrdot \lessdot x \operatorname{'s~Sign}.\)

Finally, the constant motif names \(j\!\) and \(k\!\) can be collected to one side of a composition or distributed to its individual links:

\(\begin{array}{llllll} j : x \lessdot \gtrdot y & \Leftrightarrow & j : x \lessdot m & \operatorname{and} & j : m \gtrdot y & (\exists m \in Q). \\ k : x \gtrdot \lessdot y & \Leftrightarrow & k : x \gtrdot n & \operatorname{and} & k : n \lessdot y & (\exists n \in E). \\ \end{array}\)

These statements can be read to say:

  • \(j\!\) thinks \(x\!\) an icon of \(y\!\) if and only if there is an \(m\!\) such that \(j\!\) thinks \(x\!\) an instance of \(m\!\) and \(j\!\) thinks \(m\!\) a property of \(y.\!\).
  • \(k\!\) thinks \(x\!\) an index of \(y\!\) if and only if there is an \(n\!\) such that \(k\!\) thinks \(x\!\) a property of \(n\!\) and \(k\!\) thinks \(n\!\) an instance of \(y.\!\).

Readers who object to the anthropomorphism or the approximation of these statements can replace every occurrence of the verb thinks with the phrase interprets … as, or even the circumlocution acts in every formally relevant way as if, changing what must be changed elsewhere. For the moment, I am not concerned with the exact order of reflective sensitivity that goes into these interpretive linkages, but only with a rough outline of the pragmatic equivalence classes that are afforded by the potential conduct of their agents.

In the discussion of the dialogue between \(A\!\) and \(B\!\) it was allowed that the same signs \(^{\backprime\backprime} A ^{\prime\prime}\) and \(^{\backprime\backprime} B ^{\prime\prime}\) could reference the different categories of things they name with a deliberate duality and a systematic ambiguity. Used informally as a part of the peripheral discussion, they indicate the entirety of the sign relations themselves. Used formally within the focal dialogue, they denote the objects of two particular sign relations. In just this way, or an elaboration of it, the signs \(^{\backprime\backprime} j ^{\prime\prime}\) and \(^{\backprime\backprime} k ^{\prime\prime}\) can have their meanings extended to encompass both the objective motifs that inform and regulate experience and the object experiences that fill out and substantiate their forms.

1.3.4.16. The Integration of Frameworks

A large number of the problems arising in this work have to do with the integration of different interpretive frameworks over a common objective basis, or the prospective bases provided by shared objectives. The main concern of this project continues to be the integration of dynamic and symbolic frameworks for understanding intelligent systems, concentrating on the kinds of interpretive agents that are capable of being involved in inquiry.

Integrating divergent IF's and reconciling their objectifications is, generally speaking, a very difficult maneuver to carry out successfully. Two factors that contribute to the near intractability of this task can be described and addressed as follows.

  1. The trouble is partly due to the ossified taxonomies and obligatory tactics that come through time and training to inhabit the conceptual landscapes of agents, especially if they have spent the majority of their time operating according to a single IF. The IF informs their activity in ways they no longer have to think about, and thus rarely find a reason to modify. But it also inhibits their interpretive and practical conduct to the customary ways of seeing and doing things that are granted by that framework, and it restricts them to the forms of intuition that are suggested and sanctioned by the operative IF. Without critical reflection, or a mechanism to make amendments to its own constitution, an IF tends to operate behind the scenes of observation in such a way as to obliterate any inkling of flexibility in thought or practice and to obstruct every hint or threat (so perceived) of conceptual revision.
  2. Apparently it is so much easier to devise techniques for taking things apart than it is to find ways of putting them back together that there seem to be only a few heuristic strategies of general application that are available to guide the work of integration. A few of the tools and materials needed for these constructions have been illustrated in concrete form throughout the presentation of examples in this section. An overall survey of their principles can be summed up as follows.
  • One integration heuristic is the lattice metaphor, also called the partial order or common denominator paradigm. When IF's can be objectified as OF's that are organized according to the principles of suitable orderings, then it is often possible to lift or extend these order properties to the space of frameworks themselves, and thereby to enable construction of the desired kinds of integrative frameworks as upper and lower bounds in the appropriate ordering.
  • Another integration heuristic is the mosaic metaphor, also called the stereoscopic or inverse projection paradigm. This technique has been illustrated especially well by the methods used throughout this section to analyze the three-dimensional structures of sign relations. In fact, the picture of any sign relation offers a paradigm in microcosm for the macroscopic work of integration, showing how reductive aspects of structure can be projected from a shared but irreducible reality. The extent to which the full-bodied structure of a triadic sign relation can be reconstructed from its dyadic projections, although a limited extent in general, presents a near perfect epitome of the larger task in this situation, namely, to find an integrated framework that embodies the diverse facets of reality severally observed from inside the individual frameworks. Acting as gnomonic recipes for the higher order processes they limn and delimit, sign relations keep before the mind the ways in which a higher dimensional structure determines its fragmentary aspects but is not in general determined by them.

To express the nature of this integration task in logical terms, it combines elements of both proof theory and model theory, interweaving: (1) A phase that develops theories about the symbolic competence or knowledge of intelligent agents, using abstract formal systems to represent the theories and phenomenological data to constrain them; (2) A phase that seeks concrete models of these theories, looking to the kinds of mathematical structure that have a dynamic or system-theoretic interpretation, and compiling the constraints that a recursive conceptual analysis imposes on the ultimate elements of their construction.

The set of sign relations {AB} is an example of an extremely simple formal system, encapsulating aspects of the symbolic competence and the pragmatic performance that might be exhibited by potentially intelligent interpretive agents, however abstractly and partially given at this stage of description. The symbols of a formal system like {AB} can be held subject to abstract constraints, having their meanings in relation to each other determined by definitions and axioms (for example, the laws defining an equivalence relation), making it possible to manipulate the resulting information by means of the inference rules in a proof system. This illustrates the proof-theoretic aspect of a symbol system.

Suppose that a formal system like {AB} is initially approached from a theoretical direction, in other words, by listing the abstract properties one thinks it ought to have. Then the existence of an extensional model that satisfies these constraints, as exhibited by the sign relation tables, demonstrates that one's theoretical description is logically consistent, even if the models that first come to mind are still a bit too abstractly symbolic and do not have all the dynamic concreteness that is demanded of system-theoretic interpretations. This amounts to the other side of the ledger, the model-theoretic aspect of a symbol system, at least insofar as the present account has dealt with it.

More is required of the modeler, however, in order to find the desired kinds of system-theoretic models (for example, state transition systems), and this brings the search for realizations of formal systems down to the toughest part of the exercise. Some of the problems that emerge were highlighted in the example of A and B. Although it is ordinarily possible to construct state transition systems in which the states of interpreters correspond relatively directly to the acceptations of the primitive signs given, the conflict of interpretations that develops between different interpreters from these prima facie implementations is a sign that there is something superficial about this approach.

The integration of model-theoretic and proof-theoretic aspects of physical symbol systems, besides being closely analogous to the integration of denotative and connotative aspects of sign relations, is also relevant to the job of integrating dynamic and symbolic frameworks for intelligent systems. This is so because the search for dynamic realizations of symbol systems is only a more pointed exercise in model theory, where the mathematical materials made available for modeling are further constrained by system-theoretic principles, like being able to say what the states are and how the transitions are determined.

1.3.4.17. Recapitulation : A Brush with Symbols

A common goal of work in artificial intelligence and cognitive simulation is to understand how is it possible for intelligent life to evolve from elements available in the primordial sea. Simply put, the question is: "What's in the brine that ink may character?"

Pursuant to this particular way of setting out on the long-term quest, a more immediate goal of the current project is to understand the action of full-fledged symbols, insofar as they conduct themselves through the media of minds and quasi-minds. At this very point the quest is joined by the pragmatic investigations of signs and inquiry, which share this interest in chasing down symbols to their precursive lairs.

In the pragmatic theory of signs a symbol is a strangely insistent yet curiously indirect type of sign, one whose accordance with its object depends sheerly on the real possibility that it will be so interpreted. Taking on the nature of a bet, a symbol's prospective value trades on nothing more than the chance of acquiring the desired interpretant, and thus it can capitalize on the simple fact that what it proposes is not impossible. In this way it is possible to see that a formal principle is involved in the success of symbols. The elementary conceivability of a particular sign relation, the pure circumstance that renders it logically or mathematically possible, means that the formal constraint it places on its domains is always really and potentially there, awaiting its discovery and exploitation for the purposes of representation and communication.

In this question about the symbol's capacity for meaning, then, is found another contact between the theory of signs and the logic of inquiry. As C.S. Peirce expressed it:

Now, I ask, how is it that anything can be done with a symbol, without reflecting upon the conception, much less imagining the object that belongs to it? It is simply because the symbol has acquired a nature, which may be described thus, that when it is brought before the mind certain principles of its use — whether reflected on or not — by association immediately regulate the action of the mind; and these may be regarded as laws of the symbol itself which it cannot as a symbol transgress.

(Peirce, CE 1, 173).

Inference in general obviously supposes symbolization; and all symbolization is inference. For every symbol as we have seen contains information. And … all kinds of information involve inference. Inference, then, is symbolization. They are the same notions. Now we have already analyzed the notion of a symbol, and we have found that it depends upon the possibility of representations acquiring a nature, that is to say an immediate representative power. This principle is therefore the ground of inference in general.

(Peirce, CE 1, 280).

A symbol which has connotation and denotation contains information. Whatever symbol contains information contains more connotation than is necessary to limit its possible denotation to those things which it may denote. That is, every symbol contains more than is sufficient for a principle of selection.

(Peirce, CE 1, 282).

          The information of a term is the measure of its superfluous comprehension. That is to say that the proper office of the comprehension is to determine the extension of the term. …

          Every addition to the comprehension of a term, lessens its extension up to a certain point, after that further additions increase the information instead. …

          And therefore as every term must have information, every term has superfluous comprehension. And, hence, whenever we make a symbol to express any thing or any attribute we cannot make it so empty that it shall have no superfluous comprehension.

          I am going, next, to show that inference is symbolization and that the puzzle of the validity of scientific inference lies merely in this superfluous comprehension and is therefore entirely removed by a consideration of the laws of information.

(Peirce, CE 1, 467).

A full explanation of these statements, linking scientific inference, symbolization, and information together in such an integral fashion, would require an excursion into the pragmatic theory of information that Peirce was already presenting in lectures at Harvard as early as 1865. For now, let it suffice to say that this anticipation of the information concept, fully recognizing the reality of its dimension, would not sound too remote from the varieties of law abiding constraint exploitation that have become increasingly familiar since the dawn of cybernetics.

But more than this, Peirce's notion of information supplies an array of missing links that joins together in one scheme the logical roles of terms, propositions, and arguments, the semantic functions of denotation and connotation, and the practical methodology needed to address and measure the quantitative dimensions of information. This is precisely the kind of linkage that I need in this project to integrate the dynamic and symbolic aspects of inquiry.

Not by sheer coincidence, the task of understanding symbolic action, working up through icons and indices to the point of tackling symbols, is also one of the ultimate aims that the interpretive and objective frameworks being proposed here are intended to subserve.

An OF is a convenient stage for those works that have progressed far enough to make use of it, but in times of flux it must be remembered that an OF is only a hypostatic projection, that is, the virtual image, reified concept, or phantom limb of the IF that tentatively extends it.

When the IF and the OF sketched here have been developed far enough, I hope to tell wherein and whereof a sign is able, by its very character, to address itself to a purpose, one determined by its objective nature and determining, in a measure, that of its intended interpreter, to the extent that it makes the other wiser than the other would otherwise be.

1.3.4.18. C'est Moi

From the emblem unfurled on a tapestry to tease out the working of its loom and spindle, a charge to bind these frameworks together is drawn by necessity from a single request: To whom is the sign addressed? The easy, all too easy answer comes To whom it may concern, but this works more to put off the question than it acts as a genuine response. To say that a sign relation is intended for the use of its interpreter, unless one has ready an independent account of that agent's conduct, only rephrases the initial question about the end of interpretation.

The interpreter is an agency depicted over and above the sign relation, but in a very real sense it is simply identical with the whole of it. And so one is led to examine the relationship between the interpreter and the interpretant, the element falling within the sign relation to which the sign in actuality tends. The catch is that the whole of the intended sign relation is seldom known from the beginning of inquiry, and so the aimed for interpretant is often just as unknown as the rest.

These eventualities call for the elaboration of interpretive and objective frameworks in which not just the specious but the speculative purpose of a sign can be contemplated, permitting extensions of the initial data, through error and retrial, to satisfy emergent and recurring questions.

At last, even with the needed frameworks only partly shored up, I can finally ravel up and tighten one thread of this rambling investigation. All this time, steadily rising to answer the challenge about the identity of the interpreter, Who's there?, and the role of the interpretant, Stand and unfold yourself, has been the ready and abiding state of a certain system of interpretation, developing its character and gradually evolving its meaning through a series of imputations and extensions. Namely, the MOI (the SOI experienced as an object) can answer for the interpreter, to whatever extent that conduct can be formalized, and the IM (the SOI experienced in action, in statu nascendi) can serve as a proxy for the momentary thrust of interpretive dynamics, to whatever degree that process can be explicated.

To put a finer point on this result I can do no better at this stage of discussion than to recount the "metaphorical argument" that Peirce often used to illustrate the same conclusion.

I think we need to reflect upon the circumstance that every word implies some proposition or, what is the same thing, every word, concept, symbol has an equivalent term — or one which has become identified with it, — in short, has an interpretant.

Consider, what a word or symbol is; it is a sort of representation. Now a representation is something which stands for something. … A thing cannot stand for something without standing to something for that something. Now, what is this that a word stands to ? Is it a person?

We usually say that the word homme stands to a Frenchman for man. It would be a little more precise to say that it stands to the Frenchman's mind — to his memory. It is still more accurate to say that it addresses a particular remembrance or image in that memory. And what image, what remembrance? Plainly, the one which is the mental equivalent of the word homme — in short, its interpretant. Whatever a word addresses then or stands to, is its interpretant or identified symbol. …

The interpretant of a term, then, and that which it stands to are identical. Hence, since it is of the very essence of a symbol that it should stand to something, every symbol — every word and every conception — must have an interpretant — or what is the same thing, must have information or implication.

(Peirce, CE 1, 466–467).

It will take a while to develop the wealth of information that a suitably perspicacious and persistent IF would find implicit in this unassuming homily. The main innovations that this project can hope to add to the story are as follows:

  1. To prescribe a context of effective systems theory (C'EST), one that can provide for the computational formalization of each intuitively given interpreter as a determinate model of interpretation (MOI). An appropriate set of concepts and methods would deal with the generic constitutions of interpreters, converting paraphrastic and periphrastic descriptions of their interpretive practice into relatively complete and concrete specifications of sign relations.
  2. To prepare a fully dynamic basis for actualizing interpretants. This means that an interpretant addressed by the interpretation of a sign would not be left in the form of a detached token or abstract memory image to be processed by a hypothetical but largely nondescript interpreter, but realized as a definite type of state configuration in a qualitative dynamic system. To fathom what should be the symbolic analogue of a state with momentum has presented this project with difficulties both conceptual and terminological. So far in this project, I have attempted to approach the character of an active sign-theoretic state in terms of an interpretive moment (IM), information state (IS), attended token (AT), situation of use (SOU), or instance of use (IOU). A successful concept would capture the transient dispositions that drive interpreters to engage in specific forms of inquiry, defining their ongoing state of uncertainty with regard to objects and questions of immediate concern.
1.3.4.19. Entr'acte

Have I pointed at this problem from enough different directions to convey an idea of its location and extent? Here is one more variation on the theme. I believe that our theoretical empire is bare in spots. There does not exist yet in the field a suitably comprehensive concept of a dynamic system moving through a variable state of information. This conceptual gap apparently forces investigators to focus on one aspect or the other, on the dynamic bearing or the information borne, but leaves their studies unable to integrate the several perspectives into a full-dimensioned picture of the evolving knowledge system.

It is always possible that the dual aspects of transformation and information are conceptually complementary and even non-orientable. That is, there may be no way to arrange our mental apparatus to grasp both sides at the same time, and the whole appearance that there are two sides may be an illusion of overly local and myopic perspectives. However, none of this should be taken for granted without proof.

Whatever the case, to constantly focus on the restricted aspects of dynamics adequately covered by currently available concepts leads one to ignore the growing body of symbolic knowledge that the states of systems potentially carry. Conversely, to leap from the relatively secure grounds of physically based dynamics into the briar patch of formally defined symbol systems often marks the last time that one has sufficient footing on the dynamic landscape to contemplate any form of overarching law, or any rule to prospectively govern the evolution of reflective knowledge. This is one of the reasons I continue to strive after the key ideas here. If straw is all that one has in reach, then ships and shelters will have to be built from straw.

1.3.5. Discussion of Formalization : Specific Objects

"Knowledge" is a referring back: in its essence a regressus in infinitum. That which comes to a standstill (at a supposed causa prima, at something unconditioned, etc.) is laziness, weariness —

— Nietzsche, The Will to Power, [Nie, S575, 309]

With this preamble, I return to develop my own account of formalization, with special attention to the kind of step that leads from the inchoate chaos of casual discourse to a well-founded discussion of formal models. A formalization step, of the incipient kind being considered here, has the peculiar property that one can say with some definiteness where it ends, since it leads precisely to a well-defined formal model, but not with any definiteness where it begins. Any attempt to trace the steps of formalization backward toward their ultimate beginnings can lead to an interminable multiplicity of open-ended explorations. In view of these circumstances, let me limit my attention to the frame of the present inquiry and try to sum up what brings me to this point.

I ask whether it is possible to reason about inquiry in a way that leads to a productive end. I pose this question as an inquiry into inquiry, and I use the formula \(y_0 = y \cdot y\) to express the relationship between the present inquiry, \(y_0,\!\) and a generic inquiry, \(y.\!\) Then I propose a couple of components of inquiry, expressed in the form \(y \succ \{ d, f \},\) that appear to be worth investigating. Applying these components to each other, as must be done in the present inquiry, I am led to the current discussion of formalization, \(y_0 = y \cdot y \succ f \cdot d.\)

There is already much to question here. At least, so many repetitions of the same mysterious formula are bound to lead the reader to question its meaning.

  1. The notion of a "generic inquiry" is ambiguous. Its meaning in practice depends on whether this descriptive term is interpreted literally or merely as a figure of speech. In the literal case, the name \(^{\backprime\backprime} y ^{\prime\prime}\) denotes a particular inquiry, \(y \in Y,\!\) one that is assumed to be equipotential or prototypical in a yet to be specified way. In the figurative case, the name \(^{\backprime\backprime} y ^{\prime\prime}\) is simply a variable that ranges over a collection \(Y\!\) of nominally conceivable inquiries.
  2. On first reading, the recipe \(y_0 = y \cdot y\) appears to specify that the present inquiry is constituted by taking everything denoted by the most general concept of inquiry that the present inquirer can imagine and inquiring into it by means of the most general capacity for inquiry that this same inquirer can muster.
  3. Given the formula \(y_0 = y \cdot y,\) the subordination \(y \succ \{ d, f \},\) and the successive containments \(F \subseteq M \subseteq D,\) the \(y\!\) that looks into \(y\!\) is not restricted to examining \(y \operatorname{'s}\) immediate subordinates, \(d\!\) and \(f,\!\) but it can investigate any feature of \(y \operatorname{'s}\) overall context, whether objective, syntactic, interpretive, whether definitive or incidental, and finally it can question any supporting claim of the discussion. Moreover, the question \(y\!\) is not limited to the particular claims that are being made here, but applies to the abstract relations and the general notions that are invoked in making them. Among the many kinds of inquiry that suggest themselves, there are the following possibilities:
    1. Inquiry into propositions about application and equality.
      Start with the formula \(y_0 = y \cdot y\) itself.
    2. Inquiry into application ( \(\cdot\) ).
    3. Inquiry into equality (\(=\!\)).
    4. Inquiry into indices (for example, the \(0\) in \(y_0\!\)).
    5. Inquiry into terms, namely, constants and variables.
      What are the functions of \(^{\backprime\backprime} y ^{\prime\prime}\) and \(^{\backprime\backprime} y_0 ^{\prime\prime}\) in this respect?
    6. Inquiry into decomposition or subordination (\(\succ\)).
    7. Inquiry into containment or inclusion. In particular, examine the claim that \(F \subseteq M \subseteq D\) which conditions the chances that a formalization has an object, the degree to which a formalization can be carried out by means of a discussion, and the extent to which an object of formalization can be conveyed by a form of discussion.

If inquiry begins in doubt, then inquiry into inquiry begins in doubt about doubt. All things considered, the formula \(y_0 = y \cdot y\) has to be taken as the first attempt at a description of the problem, a hypothesis about the nature of inquiry, or an image that is tossed out by way of getting an initial fix on the object in question. Everything in this account so far, and everything else that I am likely to add, can only be reckoned as hypothesis, whose accuracy, pertinence, and usefulness can be tested, judged, and redeemed only after the fact of proposing it and after the facts to which it refers have themselves been gathered up.

A number of problems present themselves due to the context in which the present inquiry is aimed to present itself. The hypothesis that suggests itself to one person, as worth exploring at a particular time, does not always present itself to another person as worth exploring at the same time, or even necessarily to the same person at another time. In a community of inquiry that extends beyond an isolated person and in a process of inquiry that extends beyond a singular moment in time, it is therefore necessary to consider the nature of the communication process that the discussion of inquiry in general and the discussion of formalization in particular need to invoke for their ultimate utility.

Solitude and solipsism are no solution to the problems of community and communication, since even an isolated individual, if ever there was, is, or comes to be such a thing, has to maintain the lines of communication that are required to integrate past, present, and prospective selves — in other words, translating everything into present terms, the parts of one's actually present self that involve actual experiences and present observations, present expectations as reflective of actual memories, and present intentions as reflective of actual hopes. So the dialogue that one holds with oneself is every bit as problematic as the dialogue that one enters with others. Others only surprise one in other ways than one ordinarily surprises oneself.

I recognize inquiry as beginning with a surprising phenomenon or a problematic situation, more briefly described as a surprise or a problem, respectively. These are the types of moments that try our souls, the instances of events that instigate inquiry as an effort to achieve their own resolution. Surprises and problems are experienced as afflicted with an irritating uncertainty or a compelling difficulty, one that calls for a response on the part of the agent in question:

  1. A "surprise" calls for an explanation to resolve the uncertainty that is present in it. This uncertainty is associated with a difference between observations and expectations.
  2. A "problem" calls for a plan of action to resolve the difficulty that is present in it. This difficulty is associated with a difference between observations and intentions. To express this diversity in a unified formula: Both types of inquiry begin with a "delta", a compact term that admits of expansion as a debt, a difference, a difficulty, a discrepancy, a dispersion, a distribution, a doubt, a duplicity, or a duty.

Expressed another way, inquiry begins with a doubt about one's object, whether this means what is true of a case, an object, or a world, what to do about reaching a goal, or whether the hoped-for goal is really good for oneself — with all that these questions lead to in essence, in deed, or in fact.

Perhaps there is an inexhaustible reality that issues in these apparent mysteries and recurrent crises, but, by the time I say this much, I am already indulging in a finite image, a hypothesis about what is going on. If nothing else, then, one finds again the familiar pattern, where the formative relation between the informal and the formal merely serves to remind one anew of the relation between the infinite and the finite.

1.3.5.1. The Will to Form

The power of form, the will to give form to oneself. "Happiness" admitted as a goal. Much strength and energy behind the emphasis on forms. The delight in looking at a life that seems so easy. — To the French, the Greeks looked like children.

— Nietzsche, The Will to Power, [Nie, S94, 58]

Let me see if can summarize as quickly as possible the problem that I see before me. Each time that I try to express my experience, to lend it a form that others can recognize, to put it in a shape that I myself can later recall, or to store it in a state that allows me the chance of its re-experience, I generate an image of the way things are, or at least a description of how things seem to me. I call this process "reflection", since it fabricates an image in a medium of signs that reflects an aspect of experience. Often this experience can be said to be "of" — what? — something that exists or persists at least partially outside the immediate experience, some action, event, or object that is imagined to inform the present experience, or perhaps some conduct of one's own that obtrudes for a moment into the world of others and meets with a reaction there. In all of these cases, where the experience is everted to refer to an object and becomes the attribute of something with an external aspect, something that is thus supposed to be a prior cause of the experience, the reflection on experience doubles as a reflection on that conduct, performance, or transaction that the experience is an experience "of". In short, if the experience has an eversion that makes it of an object, then its reflection is again a reflection that is also of this object.

Just at the point where one threatens to become lost in the morass of words for describing experience and the nuances of their interpretation, one can adopt a formal perspective, and realize that the relation among objects, experiences, and reflective images is formally analogous to the relation among objects, signs, and interpretant signs that is covered by the pragmatic theory of signs. One still has the problem: How are the expressions of experience everted to form the exterior faces of extended objects and exploited to embed them in their external circumstances, and no matter whether this object with an outer face is oneself or another? Here, one needs to understand that expressions of experience include the original experiences themselves, at least, to the extent that they permit themselves to be recognized and reflected in ongoing experience. But now, from the formal point of view, "how" means only: To describe the formal conditions of a formal possibility.

1.3.5.2. The Forms of Reasoning

The most valuable insights are arrived at last; but the most valuable insights are methods.

— Nietzsche, The Will to Power, [Nie, S469, 261]

A certain arbitrariness has to be faced in the terms that one uses to talk about reasoning, to split it up into different parts and to sort it out into different types. It is like the arbitrary choice that one makes in assigning the midpoint of an interval to the subintervals on its sides. In setting out the forms of a nomenclature, in fitting the schemes of my terminology to the territory that it disturbs in the process of mapping, I cannot avoid making arbitrary choices, but I can aim for a strategy that is flexible enough to recognize its own alternatives and to accommodate the other options that lie within their scope. If I make the mark of deduction the fact that it reduces the number of terms, as it moves from the grounds to the end of an argument, then I am due to devise a name for the process that augments the number of terms, and thus prepares the grounds for any account of experience.

What name hints at the many ways that signs arise in regard to things? What name covers the manifest ways that a map takes over its territory? What name fits this naming of names, these proceedings that inaugurate a sign in the first place, that duly install it on the office of a term? What name suits all the actions of addition, annexation, incursion, and invention that instigate the initial bearing of signs on an object domain? In the interests of a "maximal analytic precision", it is fitting that I should try to sharpen this notion to the point where it applies purely to a simple act, that of entering a new term on the lists, in effect, of enlisting a new term to the ongoing account of experience. Thus, let me style this process as "adduction" or "production", in spite of the fact that the aim of precision is partially blunted by the circumstance that these words have well-worn uses in other contexts. In this way, I can isolate to some degree the singular step of adding a term, leaving it to a later point to distinguish the role that it plays in an argument.

As it stands, the words "adduction" and "production" could apply to the arbitrary addition of terms to a discussion, whether or not these terms participate in valid forms of argument or contribute to their mediation. Although there are a number of auxiliary terms, like "factorization", "mediation", or "resolution", that can help to pin down these meanings, it is also useful to have a word that can convey the exact sense meant. Therefore, I coin the term "obduction" to suggest the type of reasoning process that is opposite or converse to deduction and that introduces a middle term "in the way" as it passes from a subject to a predicate. Consider the adjunction to one's vocabulary that is comprised of these three words: "adduction", "production", "obduction". In particular, how do they appear in the light of their mutual applications to each other and especially with respect to their own reflexivities? Notice that the terms "adduction" and "production" apply to the ways that all three terms enter this general discussion, but that "obduction" applies only to their introduction only in specific contexts of argument.

Another dimension of variation that needs to be noted among these different types of processes is their status with regard to determimism. Given the ordinary case of a well-formed syllogism, deduction is a fully deterministic process, since the middle term to be eliminated is clearly marked by its appearance in a pair of premisses. But if one is given nothing but the fact that forms this conclusion, or starts with a fact that is barely suspected to be the conclusion of a possible deduction, then there are many other middle terms and many other premisses that might be construed to result in this fact. Therefore, adduction and production, for all their uncontrolled generality, but even obduction, in spite of its specificity, cannot be treated as deterministic processes. Only in degenerate cases, where the number of terms in a discussion is extremely limited, or where the availability of middle terms is otherwise restricted, can it happen that these processes become deterministic.

1.3.5.3. A Fork in the Road

On "logical semblance" — The concepts "individual" and "species" equally false and merely apparent. "Species" expresses only the fact that an abundance of similar creatures appear at the same time and that the tempo of their further growth and change is for a long time slowed down, so actual small continuations and increases are not very much noticed (— a phase of evolution in which the evolution is not visible, so an equilibrium seems to have been attained, making possible the false notion that a goal has been attained — and that evolution has a goal —).

— Nietzsche, The Will to Power, [Nie, S521, 282]

It is worth trying to discover, as I currently am, how many properties of inquiry can be derived from the simple fact that it needs to be able to apply to itself. I find three main ways to approach this issue, the problem of inquiry's self-application, or the question of its reflexivity:

  1. One way attempts to continue the derivation in the manner of a necessary deduction, perhaps by reasoning in the following vein: If self-application is a property of inquiry, then it is sensible to inquire into the concept of application that makes this conceivable, and not just conceivable, but potentially fruitful.
  2. Another way breaks off the attempt at a deductive development and puts forth a full-scale model of inquiry, one that has enough plausibility to be probated in the court of experience and enough specificity to be tested in the context of self-application.
  3. The last way is a bit ambivalent in its indications, seeking as it does both the original unity and the ultimate synthesis at one and the same time. Perhaps it goes toward reversing the steps that lead up to this juncture, marking it down as an impasse, chalking it up as a learning experience, or admitting the failure of the imagined distinction to make a difference in reality. Whether this form of egress is interpreted as a backtracking correction or as a leaping forward to the next level of integration, it serves to erase the distinction between demonstration and exploration.

Without a clear sense of how many properties of inquiry are necessary consequences of its self-application and how many are merely accessory to it, or even whether some contradiction still lies lurking within the notion of reflexivity, I have no choice but to follow all three lines of inquiry wherever they lead, keeping an eye out for the synchronicities, the constructive collusions and the destructive collisions that may happen to occur among them.

The fictions that one introduces to shore up a shaky account of experience can often be discharged at a later stage of development, gradually replacing them with primitive elements of less and less dubious characters. Hypostases and hypotheses, the creative terms and the inventive propositions that one invokes to account for otherwise ineffable experiences, are tokens that are subject to a later account. Under recurring examination, many such tokens are found to be ciphers, marks that no one will miss if they come to be cancelled out altogether. The symbolic currencies that tend to survive lend themselves to being exchanged for stronger and more settled constructions, in other words, for concrete definitions and explicit demonstrations, gradually leading to primitive elements of more and more durable utilities.

1.3.5.4. A Forged Bond

The form counts as something enduring and therefore more valuable; but the form has merely been invented by us; and however often "the same form is attained", it does not mean that it is the same form — what appears is always something new, and it is only we, who are always comparing, who include the new, to the extent that it is similar to the old, in the unity of the "form". As if a type should be attained and, as it were, was intended by and inherent in the process of formation.

— Nietzsche, The Will to Power, [Nie, S521, 282]

A unity can be forged among the methods by noticing the following connections among them. All the while that one proceeds deductively, the primitive elements, the definitions and the axioms, must still be introduced hypothetically, notwithstanding the support they get from common sense and widespread assent. And the whole symbolic system that is constructed through hypothesis and deduction must still be tested in experience to see if it serves any purpose to maintain it.

1.3.5.5. A Formal Account

Form, species, law, idea, purpose — in all these cases the same error is made of giving a false reality to a fiction, as if events were in some way obedient to something — an artificial distinction is made in respect of events between that which acts and that toward which the act is directed (but this "which" and this "toward" are only posited in obedience to our metaphysical-logical dogmatism: they are not "facts").

— Nietzsche, The Will to Power, [Nie, S521, 282]

In this section I consider the step of formalization that takes discussion from a large scale informal inquiry to a well-defined formal inquiry, establishing a relation between the implicit context and the explicit text.

In this project, formalization is used to produce formal models that represent relevant features of a phenomenon or process of interest. Thus, the formal model is what constitutes the image of formalization.

The role of formalization splits into two different cases depending on the intended use of the formal model. When the phenomenon of interest is external to the agent that is carrying out the formalization, then the model of that phenomenon can be developed without doing significant reflection on the formalization process itself. This is usually a more straightforward operation, since it avails itself of automatic competencies that are not themselves in question. However, …

In a recursive context, a principal benefit of the formalization step is to find constituents of inquiry with reduced complexities, drawing attention from the context of informal inquiry, whose stock of questions may not be grasped well enough to ever be fruitful and the scope of whose questions may not be focused well enough to ever see an answer, and concentrating effort in an arena of formalized inquiry, where the questions are posed well enough to have some hope of bearing productive answers in a finite time.

1.3.5.6. Analogs, Icons, Models, Surrogates

One should not understand this compulsion to construct concepts, species, forms, purposes, laws ("a world of identical cases") as if they enabled us to fix the real world; but as a compulsion to arrange a world for ourselves in which our existence is made possible: — we thereby create a world which is calculable, simplified, comprehensible, etc., for us.

— Nietzsche, The Will to Power. [Nie, S521, 282]

This project makes pivotal use of certain formal models to represent the conceived structure in a phenomenon of interest. For my purposes, the phenomenon of interest is typically a process of interpretation (POI) or a process of inquiry (POI), two nominal species of process that will turn out to evolve from different points of view on the same form of conduct.

Commonly, a process of interest presents itself as the trajectory that an agent describes through an extended space of configurations. The work of conceptualization and formalization is to represent this process as a conceptual object in terms of a formal model. Depending on the point of view that is taken from moment to moment in this work, the formal model of interest may be cast either as a model of interpretation (MOI) or as a model of inquiry (MOI). As might be guessed, it will turn out that both descriptions refer essentially to the same subject, but this will take some development to become clear.

In this work, the basic structure of each MOI is adopted from the pragmatic theory of signs and the general account of its operation is derived from the pragmatic theory of inquiry. The indispensable utility of these formal models hinges on the circumstance that each MOI, whether playing its part in interpretation or in inquiry, is always a "model" in two important senses of the word. First, it is a model in the logical sense that its structure satisfies a formal theory or an abstract specification. Second, it is a model in the analogical sense that it represents an aspect of the structure that is present in another object or domain.

1.3.5.7. Steps and Tests of Formalization

This same compulsion exists in the sense activities that support reason — by simplification, coarsening, emphasizing, and elaborating, upon which all "recognition", all ability to make oneself intelligible rests. Our needs have made our senses so precise that the "same apparent world" always reappears and has thus acquired the semblance of reality.

— Nietzsche, The Will to Power, [Nie, S521, 282]

A step of formalization moves the active focus of discussion from the presentational object or source domain to the representational object or target domain that constitutes the relevant MOI. If the structure in the source context is already formalized then the step of formalization can itself be formalized in an especially elegant and satisfying way as a structure-preserving map, homomorphism, or arrow of category theory.

The test of a formalization being complete is that a computer could in principle carry out the steps of the process exactly as represented in the formal model or image. It needs to be appreciated that this is a criterion of sufficiency to formal understanding and not of necessity relevant to material re-creation. The ordinary agents of informal discussion who address the task of formalization do not disappear in the process of completing it, since it is precisely for their understanding that the step is undertaken. Only if the phenomenon at issue were by its very nature solely a matter of form could its formal analogue constitute an authentic reproduction. But this potential consideration is far from the ordinary case I need to discuss at present.

In ordinary discussion, agents depend on the likely interpretations of others to give their common notions and shared notations a meaning in practice. This means that a high level of implicit understanding is relied on to ground each informal inquiry in practice. The entire framework of logical assumptions and interpretive activities that is needed to shore up this platform will itself resist analysis, since it is precisely to save the effort of repeating routine analyses that the whole infrastructure is built.

1.3.5.8. The Referee

Our subjective compulsion to believe in logic only reveals that, long before logic itself entered our consciousness, we did nothing but introduce its postulates into events: now we discover them in events — we can no longer do otherwise — and imagine that this compulsion guarantees something connected with "truth".

— Nietzsche, The Will to Power, [Nie, S521, 282–283]

In a formal inquiry of the sort projected here, the less the discussants need to depend on the compliance of understanding interpreters the more they will necessarily understand at the end of the formalization. It might be thought that the ultimate zero of understanding expected on the part of the interpreter would correspond to the ultimate height of understanding demanded on the part of the formalizer, but this neglects the negative potential of misunderstanding, the sheer perversity of interpretation that true human creativity can bring to bear on any text. But computers are initially just as incapable of misunderstanding as they are of understanding. Therefore, it actually forms a moderate compromise to address the task of interpretation to a computational system, something that is known to begin from a relatively neutral initial condition.

1.3.5.9. Partial Formalizations

It is we who created the "thing", the "identical thing", subject, attribute, activity, object, substance, form, after we had long pursued the process of making identical, coarse and simple. The world seems logical to us because we have made it logical.

— Nietzsche, The Will to Power, [Nie, S521, 283]

In many discussions the source context remains unformalized in itself, taking form only according to the image it receives in this or that individual MOI. In this case, the step of formalization is not a total function but limited to a partial mapping from the source to the target. Such a partial representation is analogous to a sampling operation. It is not defined on every point of the source domain but assigns values only to a proper selection of source elements. Thus, a partial formalization can be regarded as achieving its form of simplification in a loose way, by ignoring elements of the source domain and collapsing material distinctions in an irregular fashion.

1.3.5.10. A Formal Utility

Ultimate solution. — We believe in reason: this, however, is the philosophy of gray concepts. Language depends on the most naive prejudices.

— Nietzsche, The Will to Power, [Nie, S522, 283]

The usefulness of the MOI is that it provides discussion with a compact image of the whole source domain.

The use of formalization as a pretermination criterion. One of the primary benefits of the requirement of formalization is to serve as a pretermination criterion.

A benefit of adopting the objective of formalization is that it equips discussion with a pretermination criterion.

The purpose of formalization is to identify a simpler version or to fashion a simpler image of a difficult inquiry, one that is well-defined and simple enough to assure its termination in a finite interval of space-time.

In formalization one tries to extract a simpler image of the larger inquiry, a context of participatory action that one is too embroiled in carrying out step by step to see as a whole. In the context of the recursive inquiry I have outlined, the step of formalization is intended to bring discussion appreciably closer to a solid base for the operational definition of inquiry.

1.3.5.11. A Formal Aesthetic

Now we read disharmonies and problems into things because we think only in the form of language — and thus believe in the "eternal truth" of "reason" (e.g., subject, attribute, etc.)

— Nietzsche, The Will to Power, [Nie, S522, 283]

Recognizing that the Latin word forma means not just form but also beauty supplies a clue that not all formal models are equally valuable for a purpose of interest. There is a certain quality of formal elegance, or select character, that is essential to the practical utility of the model.

The virtue of a good formal model is to provide discussion with a fitting image of the whole phenomenon of interest. The aim of formalization is to extract from an informal discussion or locate within a broader inquiry a clearer and simpler image of the whole activity. If the formalized precis or image is unusually apt it might be prized as a recapitulation or gnomon and said to capture the essence, the gist, of the nub of the whole affair.

A pragmatic qualification of this virtue requires that the image be formed quickly enough to take decisive action on. So the quality of being a result often takes precedence over the quality of the result. A definite result, however partial, is frequently reckoned to be better than having to wait for a complete picture that may never develop.

But an overly narrow or premature formalization, where the quality of the original phenomenon is too severely reduced in the formalized image, may result in destroying all interest in the result that does result.

1.3.5.12. A Formal Apology

We cease to think when we refuse to do so under the constraint of language; we barely reach the doubt that sees this limitation as a limitation.

— Nietzsche, The Will to Power, [Nie, S522, 283]

Seizing the advantage of this formal flexibility makes it possible to take abstract leaps over a multitude of material obstacles, to reason about many properties of objects and processes from knowledge of their form alone, without having to know everything about their material content down to the depths that matter can go.

1.3.5.13. A Formal Suspicion

Rational thought is interpretation according to a scheme that we cannot throw off.

— Nietzsche, The Will to Power, [Nie, S522, 283]

I hope that the reader has arrived by now at an independent suspicion that the process of formalization is a microcosm nearly as complex as the whole subject of inquiry itself. Indeed, the initial formulation of a problem is tantamount to a mode of "representational inquiry". In many ways this first effort, that stirs from the torpor of ineffable unease to seek any sort of unity in the manifold of fragmented impressions, is the most difficult, subtle, and crucial kind of inquiry. It begins in doubt about even so much as a fair way to represent the problematic situation, but its result can predestine whether subsequent inquiry has any hope of success. There is very little in this brand of formal engagement and participatory representation that resembles the simple and disinterested act of holding a mirror, flat and featureless, up to nature.

If formalization really is a form of inquiry in itself, then its formulations have deductive consequences that can be tested. In other words, formal models have logical effects that reflect on their fitness to qualify as representations, and these effects can cause them to be rejected merely on the grounds of being a defective picture or a misleading conception of the source phenomenon. Therefore, it should be appreciated that software tailored to this task will probably need to spend more time in the alterations of backtracking than it will have occasion to trot out parades of ready-to-wear models.

Impelled by the mass of assembled clues from restarts and refits to the gathering form of a coherent direction, the inkling may have gradually accumulated in the reader that something of the same description has been treated in the pragmatic theory of inquiry under the heading of abductive reasoning. This is distinguished from inductive reasoning, that goes from the particular to the general, in that abductive reasoning must work from a mixed collection of generals and particulars toward a middle term, a formal intermediary that is more specific than the vague allusions gathered about its subject and more generic than the elusive instances fashioned to illustrate its prospective predicates.

In a recursive context, the function of formalization is to relate a difficult problem to a simpler problem, breaking the original inquiry into two parts, the step of formalization and the rest of the inquiry, both of which branches it is hoped will be nearer to solid ground and easier to grasp than the original question.

1.3.5.14. The Double Aspect of Concepts

Nothing is more erroneous than to make of psychical and physical phenomena the two faces, the two revelations of one and the same substance. Nothing is explained thereby: the concept "substance" is perfectly useless as an explanation. Consciousness in a subsidiary role, almost indifferent, superfluous, perhaps destined to vanish and give way to a perfect automatism —

— Nietzsche, The Will to Power, [Nie, S523, 283]

This work is a particular inquiry into the nature of inquiry in general. As a consequence, every conceptual construct that appears in it will take on a double aspect.

To illustrate, let take the concept of a "sign relation" as an example and let me use it to speak about my own agency in this inquiry. All I need to say about a sign relation at this point is that it is a three-place relation, and therefore can be imagined as a relational data-base with three columns, in this case naming the "object", the "sign", and the "interpretant" of the relation at each moment in time of the corresponding "sign process". At any given moment of this inquiry I will be participating in a certain sign relation that constitutes the informal context of my activity, the full nature of which I can barely hope to conceptualize in explicitly formal terms. At times, the object of this informal sign relation will itself be a sign relation, typically one that is already formalized or one that I have a better hope of formalizing, but it could conceivably be the original sign relation with which I began.

In such cases, when the object of a sign relation is also a sign relation, the general concept of a sign relation takes on a double duty:

  1. The less formalized sign relation is used to mediate the inquiry. As a conceptual construct, it is not yet fully conceived or constructed at the moments of inquiry being considered. Perhaps it is better to regard it as a "concept under construction". Employed as a contextual apparatus, this sign relation serves an instrumental role in the study or construal of its objective sign relation.
  2. The more formalized sign relation is mentioned as a substantive object to be contemplated and manipulated by the inquiry. As a conceptual construct, it exemplifies the role intended for it best if it is already as completely formalized as possible. It is being engaged as a substantive object of inquiry.

I have given this project a reflective or a recursive cast, describing it as inquiry into inquiry, and one of the consequences of this is that every concept employed in the work will take on a double aspect, divided role, or dual purpose. At any moment, the object inquiry of the moment is aimed to take on a formal definition, whereas the active inquiry …

1.3.5.15. A Formal Permission

If there are to be synthetic a priori judgments, then reason must be in a position to make connections: connection is a form. Reason must possess the capacity of giving form.

— Nietzsche, The Will to Power, [Nie, S530, 288]
1.3.5.16. A Formal Invention

Before there is "thought" (gedacht) there must have been "invention" (gedichtet); the construction of identical cases, of the appearance of sameness, is more primitive than the knowledge of sameness.

Nietzsche, The Will to Power, [Nie, S544, 293]

1.3.6. Recursion in Perpetuity

Will to truth is a making firm, a making true and durable, an abolition of the false character of things, a reinterpretation of it into beings. "Truth" is therefore not something there, that might be found or discovered — but something that must be created and that gives a name to a process, or rather to a will to overcome that has in itself no end — introducing truth, as a processus in infinitum, an active determining — not a becoming-conscious of something that is in itself firm and determined. It is a word for the "will to power".

— Nietzsche, The Will to Power, [Nie, S552, 298]

\(\cdots\)

Life is founded upon the premise of a belief in enduring and regularly recurring things; the more powerful life is, the wider must be the knowable world to which we, as it were, attribute being. Logicizing, rationalizing, systematizing as expedients of life.

— Nietzsche, The Will to Power, [Nie, S552, 298–299]

\(\cdots\)

Man projects his drive to truth, his "goal" in a certain sense, outside himself as a world that has being, as a metaphysical world, as a "thing-in-itself", as a world already in existence. His needs as creator invent the world upon which he works, anticipate it; this anticipation (this "belief" in truth) is his support.

— Nietzsche, The Will to Power, [Nie, S552, 299]

\(\cdots\)

1.3.7. Processus, Regressus, Progressus

From time immemorial we have ascribed the value of an action, a character, an existence, to the intention, the purpose for the sake of which one has acted or lived: this age-old idiosyncrasy finally takes a dangerous turn — provided, that is, that the absence of intention and purpose in events comes more and more to the forefront of consciousness.

— Nietzsche, The Will to Power, [Nie, S666, 351]

\(\cdots\)

Thus there seems to be in preparation a universal disvaluation: "Nothing has any meaning" — this melancholy sentence means "All meaning lies in intention, and if intention is altogether lacking, then meaning is altogether lacking, too".

— Nietzsche, The Will to Power, [Nie, S666, 351]

\(\cdots\)

In accordance with this valuation, one was constrained to transfer the value of life to a "life after death", or to the progressive development of ideas or of mankind or of the people or beyond mankind; but with that one had arrived at a progressus in infinitum of purposes: one was at last constrained to make a place for oneself in the "world process" (perhaps with the dysdaemonistic perspective that it was a process into nothingness).

— Nietzsche, The Will to Power, [Nie, S666, 351]

\(\cdots\)

1.3.8. Rondeau : Tempo di Menuetto

And do you know what "the world" is to me? Shall I show it to you in my mirror? This world: a monster of energy, without beginning, without end; a firm, iron magnitude of force that does not grow bigger or smaller, that does not expend itself but only transforms itself; as a whole, of unalterable size, a household without expenses or losses, but likewise without increase or income; enclosed by "nothingness" as by a boundary; not something blurry or wasted, not something endlessly extended, but set in a definite space as a definite force, and not a space that might be "empty" here or there, but rather as force throughout, as a play of forces and waves of forces, at the same time one and many, increasing here and at the same time decreasing there; a sea of forces flowing and rushing together, eternally changing, eternally flooding back, with tremendous years of recurrence, with an ebb and a flood of its forms; out of the simplest forms striving toward the most complex, out of the stillest, most rigid, coldest forms toward the hottest, most turbulent, most self-contradictory, and then again returning home to the simple out of this abundance, out of the play of contradictions back to the joy of concord, still affirming itself in this uniformity of its courses and its years, blessing itself as that which must return eternally, as a becoming that knows no satiety, no disgust, no weariness: this, my Dionysian world of the eternally self-creating, the eternally self-destroying, this mystery world of the twofold voluptuous delight, my "beyond good and evil", without goal, unless the joy of the circle is itself a goal; without will, unless a ring feels good will toward itself — do you want a name for this world? A solution for all its riddles? A light for you, too, you best-concealed, strongest, most intrepid, most midnightly men? — This world is the will to power — and nothing besides! And you yourselves are also this will to power — and nothing besides!

— Nietzsche, The Will to Power, [Nie, S1067, 549–550]

I have attempted in a narrative form to present an accurate picture of the formalization process as it develops in practice. Of course, accuracy must be distinguished from precision, for there are times when accuracy is better served by a vague outline that captures the manner of the subject than it is by a minute account that misses the mark entirely or catches each detail at the expense of losing the central point. Conveying the traffic between chaos and form under the restraint of an overbearing and excisive taxonomy would have sheared away half the picture and robbed the whole exchange of the lion's share of the duty.

At moments I could do no better than to break into metaphor, but I believe that a certain tolerance for metaphor, especially in the initial stages of formalization, is a necessary capacity for reaching beyond the secure boundaries of what is already comfortable to reason. Plus, a controlled transport of metaphor allows one to draw on the boundless store of ready analogies and germinal morphisms that every natural language provides for free.

Finally, it would leave an unfair impression to delete the characters of narrative and metaphor from the text of the story, and especially after they have had such a hand in creating it.

Even the most precise of established formulations cannot be protected from being reused in ways that initially appear as an abuse of language.

One of the most difficult questions about the development of intelligent systems is how the power of abstraction can arise, beginning from the kinds of formal systems where each symbol has one meaning at most. I think that the natural pathway of this evolution has to go through the obscure territory of ambiguity and metaphor.

A critical phase and a crucial step in the development of intelligent systems, biological or technological, is concerned with achieving a certain power of abstraction, but the real trick is for the budding intelligence to accomplish this without losing a grip on the material contents of the abstract categories, the labels and levels of which this power interposes and intercalates between essence and existence.

If one looks to the surface material of natural languages for signs of how this power of abstraction might arise, one finds a suggestive set of potential precursors in the phenomena of ambiguity, anaphora, and metaphor. Keeping this in mind throughout the project, I will pay close attention to the places where the power of abstraction seems to develop, especially in the guises of systematic ambiguity and controlled metaphor.

Paradoxically, and a bit ironically, if one's initial attempt to formalize semantics begins with the aim of stamping out ambiguity, metaphor, and all forms of figurative language use, then one may have precluded all hope of developing a capacity for abstraction at any later stage.

References

  • Aristotle, "On The Soul", in Aristotle, Volume 8, W.S. Hett (trans.), William Heinemann, London, UK, 1936, 1986.
  • Charniak, E., and McDermott, D.V. (1985), Introduction to Artificial Intelligence, Addison-Wesley, Reading, MA.
  • Charniak, E., Riesbeck, C.K., and McDermott, D.V. (1980), Artificial Intelligence Programming, Lawrence Erlbaum Associates, Hillsdale, NJ.
  • Dewey, John (1910/1991), How We Think, Prometheus Books, Buffalo, NY. Originally published 1910.
  • Holland, J.H., Holyoak, K.J., Nisbett, R.E., and Thagard, P.R. (1986), Induction : Processes of Inference, Learning, and Discovery, MIT Press, Cambridge, MA.
  • O'Rorke, P. (1990), "Review of AAAI 1990 Spring Symposium on Automated Abduction", SIGART Bulletin, Vol. 1, No. 3, ACM Press, October 1990, pp. 12–17.
  • Pearl, J. (1991), Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference, Revised 2nd printing, Morgan Kaufmann, San Mateo, CA.
  • Peng, Y., and Reggia, J.A. (1990), Abductive Inference Models for Diagnostic Problem-Solving, Springer-Verlag, New York, NY.
  • Proust, Marcel (1913–1927), In Search of Lost Time, Christopher Prendergast (general editor), Penguin Books, London, UK, 2002, 6 volumes:
  1. The Way by Swann's (1913), Lydia Davis (trans.)
  2. In the Shadow of Young Girls in Flower (1919), James Grieve (trans.)
  3. The Guermantes Way (1920–1921), Mark Treharne (trans.)
  4. Sodom and Gomorrah (1921–1922), John Sturrock (trans.)
  5. The Prisoner (1923), Carol Clark (trans.)

    The Fugitive (1925), Peter Collier (trans.)

  6. Finding Time Again (1927), Ian Patterson (trans.)
  • Shakespeare, William (1988), William Shakespeare : The Complete Works, Compact Edition, S. Wells and G. Taylor (eds.), Oxford University Press, Oxford, UK.
  • Sowa, J.F. (1984), Conceptual Structures : Information Processing in Mind and Machine, Addison-Wesley, Reading, MA.
  • Sowa, J.F. (ed., 1991), Principles of Semantic Networks : Explorations in the Representation of Knowledge, Morgan Kaufmann, San Mateo, CA.

Document History

Title: Inquiry Driven Systems : An Inquiry Into Inquiry
Author: Jon Awbrey    
Revised: May-Jun 2004 Draft 11.00 Inquiry List: 1 2 3
Revised: 14 Apr 2004 Draft 10.04
Revised: 07 Apr 2003 Draft 10.01
Revised: 02 Mar 2003 Draft 10.00
Revised: 23 Jun 2002 Draft 8.76
Revised: 10 Jun 2002 Draft 8.75
Revised: 06 Jan 2002 Draft 8.70
Revised: 26 Nov 2001 Draft 8.63 Arisbe List, SUO List
Revised: 08 Jan 2001 Draft 8b
Revised: 30 Jun 2000 Draft 8.2 Arisbe Site: 1
Revised: 11 Feb 2000 Draft 8a
Revised: 01 Oct 1999 Draft 7e
Revised: 23 Jun 1999 Draft 7b
Created: 23 Jun 1996
Advisor: M.A. Zohdy
Setting: Oakland University, Rochester, Michigan, USA


<sharethis />