Difference between revisions of "User:Jon Awbrey/TABLE"
Jon Awbrey (talk | contribs) (→Symmetric Group S<sub>3</sub>: copy raw material) |
Jon Awbrey (talk | contribs) |
||
(46 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | == | + | ==Cactus Language== |
===Ascii Tables=== | ===Ascii Tables=== | ||
+ | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
+ | | | ||
<pre> | <pre> | ||
− | + | o-------------------o | |
− | o--------- | + | | | |
− | | | + | | @ | |
− | | | + | | | |
− | | | + | o-------------------o |
− | o--------- | + | | | |
− | | | + | | o | |
− | | | | + | | | | |
− | o--------- | + | | @ | |
− | | | + | | | |
− | | | + | o-------------------o |
− | | | + | | | |
− | | | + | | a | |
− | | | + | | @ | |
− | | | + | | | |
− | | | + | o-------------------o |
− | | | + | | | |
− | | | + | | a | |
− | | | + | | o | |
− | | | + | | | | |
− | + | | @ | | |
− | | | + | | | |
− | + | o-------------------o | |
− | | | + | | | |
− | | | + | | a b c | |
− | | | + | | @ | |
− | | | + | | | |
− | + | o-------------------o | |
− | | | + | | | |
− | | | + | | a b c | |
− | + | | o o o | | |
− | | | + | | \|/ | |
− | | | + | | o | |
− | | | + | | | | |
− | | | + | | @ | |
− | | | + | | | |
− | + | o-------------------o | |
− | + | | | | |
− | + | | a b | | |
− | | | + | | o---o | |
− | + | | | | | |
− | | | + | | @ | |
− | o--------- | + | | | |
+ | o-------------------o | ||
+ | | | | ||
+ | | a b | | ||
+ | | o---o | | ||
+ | | \ / | | ||
+ | | @ | | ||
+ | | | | ||
+ | o-------------------o | ||
+ | | | | ||
+ | | a b | | ||
+ | | o---o | | ||
+ | | \ / | | ||
+ | | o | | ||
+ | | | | | ||
+ | | @ | | ||
+ | | | | ||
+ | o-------------------o | ||
+ | | | | ||
+ | | a b c | | ||
+ | | o--o--o | | ||
+ | | \ / | | ||
+ | | \ / | | ||
+ | | @ | | ||
+ | | | | ||
+ | o-------------------o | ||
+ | | | | ||
+ | | a b c | | ||
+ | | o o o | | ||
+ | | | | | | | ||
+ | | o--o--o | | ||
+ | | \ / | | ||
+ | | \ / | | ||
+ | | @ | | ||
+ | | | | ||
+ | o-------------------o | ||
+ | | | | ||
+ | | b c | | ||
+ | | o o | | ||
+ | | a | | | | ||
+ | | o--o--o | | ||
+ | | \ / | | ||
+ | | \ / | | ||
+ | | @ | | ||
+ | | | | ||
+ | o-------------------o | ||
</pre> | </pre> | ||
+ | |} | ||
+ | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
+ | | | ||
<pre> | <pre> | ||
− | Table | + | Table 13. The Existential Interpretation |
− | o----- | + | o----o-------------------o-------------------o-------------------o |
− | | | + | | Ex | Cactus Graph | Cactus Expression | Existential | |
− | | | + | | | | | Interpretation | |
− | + | o----o-------------------o-------------------o-------------------o | |
− | o------- | + | | | | | | |
− | | | + | | 1 | @ | " " | true. | |
− | | | | + | | | | | | |
− | o------ | + | o----o-------------------o-------------------o-------------------o |
− | | | + | | | | | | |
− | | | + | | | o | | | |
− | | | | + | | | | | | | |
− | o--------- | + | | 2 | @ | ( ) | untrue. | |
− | | | + | | | | | | |
− | | | + | o----o-------------------o-------------------o-------------------o |
− | | | + | | | | | | |
− | | | + | | | a | | | |
− | + | | 3 | @ | a | a. | | |
− | + | | | | | | | |
− | | | + | o----o-------------------o-------------------o-------------------o |
− | | | + | | | | | | |
− | | | + | | | a | | | |
− | + | | | o | | | | |
− | | | + | | | | | | | |
− | | | + | | 4 | @ | (a) | not a. | |
− | | | + | | | | | | |
− | | | + | o----o-------------------o-------------------o-------------------o |
− | + | | | | | | | |
− | + | | | a b c | | | | |
− | | | + | | 5 | @ | a b c | a and b and c. | |
− | | | + | | | | | | |
− | | | + | o----o-------------------o-------------------o-------------------o |
− | | | + | | | | | | |
− | | | | + | | | a b c | | | |
− | + | | | o o o | | | | |
− | | | + | | | \|/ | | | |
− | | | + | | | o | | | |
− | | | + | | | | | | | |
− | | | + | | 6 | @ | ((a)(b)(c)) | a or b or c. | |
− | | | + | | | | | | |
− | o--------- | + | o----o-------------------o-------------------o-------------------o |
− | | | + | | | | | | |
− | | | + | | | | | a implies b. | |
− | | | + | | | a b | | | |
− | | | + | | | o---o | | if a then b. | |
− | | | + | | | | | | | |
− | | | + | | 7 | @ | ( a (b)) | no a sans b. | |
− | + | | | | | | | |
− | + | o----o-------------------o-------------------o-------------------o | |
− | + | | | | | | | |
− | + | | | a b | | | | |
− | | | | | + | | | o---o | | a exclusive-or b. | |
− | | | + | | | \ / | | | |
− | + | | 8 | @ | ( a , b ) | a not equal to b. | | |
− | + | | | | | | | |
− | < | + | o----o-------------------o-------------------o-------------------o |
+ | | | | | | | ||
+ | | | a b | | | | ||
+ | | | o---o | | | | ||
+ | | | \ / | | | | ||
+ | | | o | | a if & only if b. | | ||
+ | | | | | | | | ||
+ | | 9 | @ | (( a , b )) | a equates with b. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b c | | | | ||
+ | | | o--o--o | | | | ||
+ | | | \ / | | | | ||
+ | | | \ / | | just one false | | ||
+ | | 10 | @ | ( a , b , c ) | out of a, b, c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b c | | | | ||
+ | | | o o o | | | | ||
+ | | | | | | | | | | ||
+ | | | o--o--o | | | | ||
+ | | | \ / | | | | ||
+ | | | \ / | | just one true | | ||
+ | | 11 | @ | ((a),(b),(c)) | among a, b, c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | | | genus a over | | ||
+ | | | b c | | species b, c. | | ||
+ | | | o o | | | | ||
+ | | | a | | | | partition a | | ||
+ | | | o--o--o | | among b & c. | | ||
+ | | | \ / | | | | ||
+ | | | \ / | | whole pie a: | | ||
+ | | 12 | @ | ( a ,(b),(c)) | slices b, c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
+ | | | ||
+ | <pre> | ||
+ | Table 14. The Entitative Interpretation | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | En | Cactus Graph | Cactus Expression | Entitative | | ||
+ | | | | | Interpretation | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | 1 | @ | " " | untrue. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | o | | | | ||
+ | | | | | | | | ||
+ | | 2 | @ | ( ) | true. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a | | | | ||
+ | | 3 | @ | a | a. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a | | | | ||
+ | | | o | | | | ||
+ | | | | | | | | ||
+ | | 4 | @ | (a) | not a. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b c | | | | ||
+ | | 5 | @ | a b c | a or b or c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b c | | | | ||
+ | | | o o o | | | | ||
+ | | | \|/ | | | | ||
+ | | | o | | | | ||
+ | | | | | | | | ||
+ | | 6 | @ | ((a)(b)(c)) | a and b and c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | | | a implies b. | | ||
+ | | | | | | | ||
+ | | | o a | | if a then b. | | ||
+ | | | | | | | | ||
+ | | 7 | @ b | (a) b | not a, or b. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b | | | | ||
+ | | | o---o | | a if & only if b. | | ||
+ | | | \ / | | | | ||
+ | | 8 | @ | ( a , b ) | a equates with b. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b | | | | ||
+ | | | o---o | | | | ||
+ | | | \ / | | | | ||
+ | | | o | | a exclusive-or b. | | ||
+ | | | | | | | | ||
+ | | 9 | @ | (( a , b )) | a not equal to b. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b c | | | | ||
+ | | | o--o--o | | | | ||
+ | | | \ / | | | | ||
+ | | | \ / | | not just one true | | ||
+ | | 10 | @ | ( a , b , c ) | out of a, b, c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a b c | | | | ||
+ | | | o--o--o | | | | ||
+ | | | \ / | | | | ||
+ | | | \ / | | | | ||
+ | | | o | | | | ||
+ | | | | | | just one true | | ||
+ | | 11 | @ | (( a , b , c )) | among a, b, c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | | | | | | | ||
+ | | | a | | | | ||
+ | | | o | | genus a over | | ||
+ | | | | b c | | species b, c. | | ||
+ | | | o--o--o | | | | ||
+ | | | \ / | | partition a | | ||
+ | | | \ / | | among b & c. | | ||
+ | | | o | | | | ||
+ | | | | | | whole pie a: | | ||
+ | | 12 | @ | (((a), b , c )) | slices b, c. | | ||
+ | | | | | | | ||
+ | o----o-------------------o-------------------o-------------------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | {| align="center" cellpadding="6" style="text-align:center; width:90%" | ||
+ | | | ||
+ | <pre> | ||
+ | Table 15. Existential & Entitative Interpretations of Cactus Structures | ||
+ | o-----------------o-----------------o-----------------o-----------------o | ||
+ | | Cactus Graph | Cactus String | Existential | Entitative | | ||
+ | | | | Interpretation | Interpretation | | ||
+ | o-----------------o-----------------o-----------------o-----------------o | ||
+ | | | | | | | ||
+ | | @ | " " | true | false | | ||
+ | | | | | | | ||
+ | o-----------------o-----------------o-----------------o-----------------o | ||
+ | | | | | | | ||
+ | | o | | | | | ||
+ | | | | | | | | ||
+ | | @ | ( ) | false | true | | ||
+ | | | | | | | ||
+ | o-----------------o-----------------o-----------------o-----------------o | ||
+ | | | | | | | ||
+ | | C_1 ... C_k | | | | | ||
+ | | @ | C_1 ... C_k | C_1 & ... & C_k | C_1 v ... v C_k | | ||
+ | | | | | | | ||
+ | o-----------------o-----------------o-----------------o-----------------o | ||
+ | | | | | | | ||
+ | | C_1 C_2 C_k | | Just one | Not just one | | ||
+ | | o---o-...-o | | | | | ||
+ | | \ / | | of the C_j, | of the C_j, | | ||
+ | | \ / | | | | | ||
+ | | \ / | | j = 1 to k, | j = 1 to k, | | ||
+ | | \ / | | | | | ||
+ | | @ | (C_1, ..., C_k) | is not true. | is true. | | ||
+ | | | | | | | ||
+ | o-----------------o-----------------o-----------------o-----------------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | ===Wiki TeX Tables=== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ <math>\text{Table A.}~~\text{Existential Interpretation}</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | <math>\text{Cactus Graph}\!</math> | ||
+ | | <math>\text{Cactus Expression}\!</math> | ||
+ | | <math>\text{Interpretation}\!</math> | ||
+ | |- | ||
+ | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] | ||
+ | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> | ||
+ | | <math>\operatorname{true}.</math> | ||
+ | |- | ||
+ | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] | ||
+ | | <math>\texttt{(~)}</math> | ||
+ | | <math>\operatorname{false}.</math> | ||
+ | |- | ||
+ | | height="100px" | [[Image:Cactus A Big.jpg|20px]] | ||
+ | | <math>a\!</math> | ||
+ | | <math>a.\!</math> | ||
+ | |- | ||
+ | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] | ||
+ | | <math>\texttt{(} a \texttt{)}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \tilde{a} | ||
+ | \\[2pt] | ||
+ | a^\prime | ||
+ | \\[2pt] | ||
+ | \lnot a | ||
+ | \\[2pt] | ||
+ | \operatorname{not}~ a. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] | ||
+ | | <math>a~b~c</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | a \land b \land c | ||
+ | \\[6pt] | ||
+ | a ~\operatorname{and}~ b ~\operatorname{and}~ c. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | a \lor b \lor c | ||
+ | \\[6pt] | ||
+ | a ~\operatorname{or}~ b ~\operatorname{or}~ c. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] | ||
+ | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | a \Rightarrow b | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{implies}~ b. | ||
+ | \\[2pt] | ||
+ | \operatorname{if}~ a ~\operatorname{then}~ b. | ||
+ | \\[2pt] | ||
+ | \operatorname{not}~ a ~\operatorname{without}~ b. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] | ||
+ | | <math>\texttt{(} a, b \texttt{)}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | a + b | ||
+ | \\[2pt] | ||
+ | a \neq b | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{exclusive-or}~ b. | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{not~equal~to}~ b. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] | ||
+ | | <math>\texttt{((} a, b \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | a = b | ||
+ | \\[2pt] | ||
+ | a \iff b | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{equals}~ b. | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{if~and~only~if}~ b. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] | ||
+ | | <math>\texttt{(} a, b, c \texttt{)}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{just~one~of} | ||
+ | \\ | ||
+ | a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~false}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{((} a \texttt{)}, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{just~one~of} | ||
+ | \\ | ||
+ | a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~true}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus (A,(B),(C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{(} a, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{genus}~ a ~\operatorname{of~species}~ b, c. | ||
+ | \\[6pt] | ||
+ | \operatorname{partition}~ a ~\operatorname{into}~ b, c. | ||
+ | \\[6pt] | ||
+ | \operatorname{pie}~ a ~\operatorname{of~slices}~ b, c. | ||
+ | \end{matrix}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
− | < | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
− | Table | + | |+ <math>\text{Table B.}~~\text{Entitative Interpretation}</math> |
− | + | |- style="background:#f0f0ff" | |
− | | | + | | <math>\text{Cactus Graph}\!</math> |
− | | | + | | <math>\text{Cactus Expression}\!</math> |
− | | | + | | <math>\text{Interpretation}\!</math> |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] |
− | + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> | |
− | | | + | | <math>\operatorname{false}.</math> |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] |
− | + | | <math>\texttt{(~)}</math> | |
− | | | + | | <math>\operatorname{true}.</math> |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] |
− | + | | <math>a\!</math> | |
− | | | + | | <math>a.\!</math> |
− | | | + | |- |
− | | | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] |
− | | | + | | <math>\texttt{(} a \texttt{)}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \tilde{a} | |
− | + | \\[2pt] | |
− | + | a^\prime | |
− | + | \\[2pt] | |
− | + | \lnot a | |
− | + | \\[2pt] | |
− | | | + | \operatorname{not}~ a. |
− | | | + | \end{matrix}</math> |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] |
− | + | | <math>a~b~c</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | a \lor b \lor c | |
− | + | \\[6pt] | |
− | + | a ~\operatorname{or}~ b ~\operatorname{or}~ c. | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | | | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] |
− | | | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | a \land b \land c | |
− | + | \\[6pt] | |
− | | | + | a ~\operatorname{and}~ b ~\operatorname{and}~ c. |
− | | | + | \end{matrix}</math> |
− | + | |- | |
− | + | | height="120px" | [[Image:Cactus (A)B Big.jpg|35px]] | |
− | + | | <math>\texttt{(} a \texttt{)} b</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | a \Rightarrow b | |
− | + | \\[2pt] | |
− | + | a ~\operatorname{implies}~ b. | |
− | | | + | \\[2pt] |
− | + | \operatorname{if}~ a ~\operatorname{then}~ b. | |
− | < | + | \\[2pt] |
+ | \operatorname{not}~ a, ~\operatorname{or}~ b. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] | ||
+ | | <math>\texttt{(} a, b \texttt{)}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | a = b | ||
+ | \\[2pt] | ||
+ | a \iff b | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{equals}~ b. | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{if~and~only~if}~ b. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] | ||
+ | | <math>\texttt{((} a, b \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | a + b | ||
+ | \\[2pt] | ||
+ | a \neq b | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{exclusive-or}~ b. | ||
+ | \\[2pt] | ||
+ | a ~\operatorname{not~equal~to}~ b. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] | ||
+ | | <math>\texttt{(} a, b, c \texttt{)}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{not~just~one~of} | ||
+ | \\ | ||
+ | a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~true}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus ((A,B,C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{((} a, b, c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{just~one~of} | ||
+ | \\ | ||
+ | a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~true}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="200px" | [[Image:Cactus (((A),B,C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{(((} a \texttt{)}, b, c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{genus}~ a ~\operatorname{of~species}~ b, c. | ||
+ | \\[6pt] | ||
+ | \operatorname{partition}~ a ~\operatorname{into}~ b, c. | ||
+ | \\[6pt] | ||
+ | \operatorname{pie}~ a ~\operatorname{of~slices}~ b, c. | ||
+ | \end{matrix}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
− | < | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
− | Table | + | |+ <math>\text{Table C.}~~\text{Dualing Interpretations}</math> |
− | + | |- style="background:#f0f0ff" | |
− | | | + | | <math>\text{Graph}\!</math> |
− | | | + | | <math>\text{String}\!</math> |
− | | | + | | <math>\text{Existential}\!</math> |
− | + | | <math>\text{Entitative}\!</math> | |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus Node Big Fat.jpg|20px]] |
− | | | + | | <math>{}^{\backprime\backprime}\texttt{~}{}^{\prime\prime}</math> |
− | + | | <math>\operatorname{true}.</math> | |
− | | | + | | <math>\operatorname{false}.</math> |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus Spike Big Fat.jpg|20px]] |
− | | | + | | <math>\texttt{(~)}</math> |
− | | | + | | <math>\operatorname{false}.</math> |
− | | | + | | <math>\operatorname{true}.</math> |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] |
− | | | + | | <math>a\!</math> |
− | + | | <math>a.\!</math> | |
− | | | + | | <math>a.\!</math> |
− | + | |- | |
− | | | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] |
− | | | + | | <math>\texttt{(} a \texttt{)}</math> |
− | + | | <math>\lnot a</math> | |
− | + | | <math>\lnot a</math> | |
− | | | + | |- |
− | | | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] |
− | | | + | | <math>a~b~c</math> |
− | | | + | | <math>a \land b \land c</math> |
− | + | | <math>a \lor b \lor c</math> | |
− | + | |- | |
− | | | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] |
− | | | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
− | | | + | | <math>a \lor b \lor c</math> |
− | + | | <math>a \land b \land c</math> | |
− | | | + | |- |
− | + | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] | |
− | + | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> | |
− | + | | <math>a \Rightarrow b</math> | |
− | | | + | | |
− | | | + | |- |
− | | | + | | height="120px" | [[Image:Cactus (A)B Big.jpg|35px]] |
− | + | | <math>\texttt{(} a \texttt{)} b</math> | |
− | | | + | | |
− | | | + | | <math>a \Rightarrow b</math> |
− | | | + | |- |
− | + | | height="120px" | [[Image:Cactus (A,B) Big.jpg|65px]] | |
− | + | | <math>\texttt{(} a, b \texttt{)}</math> | |
− | + | | <math>a \neq b</math> | |
− | | | + | | <math>a = b\!</math> |
− | + | |- | |
− | < | + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] |
+ | | <math>\texttt{((} a, b \texttt{))}</math> | ||
+ | | <math>a = b\!</math> | ||
+ | | <math>a \neq b\!</math> | ||
+ | |- | ||
+ | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] | ||
+ | | <math>\texttt{(} a, b, c \texttt{)}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~false}. | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{not~just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~true}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{((} a \texttt{)}, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~true}. | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{not~just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~false}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus ((A,B,C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{((} a, b, c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{not~just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~false}. | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~true}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="200px" | [[Image:Cactus (((A),(B),(C))) Big.jpg|65px]] | ||
+ | | <math>\texttt{(((} a \texttt{)}, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{)))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{not~just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~true}. | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{just~one} | ||
+ | \\ | ||
+ | \operatorname{of}~ a, b, c | ||
+ | \\ | ||
+ | \operatorname{is~false}. | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | height="160px" | [[Image:Cactus (A,(B),(C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{(} a, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{partition}~ a | ||
+ | \\ | ||
+ | \operatorname{into}~ b, c. | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | |- | ||
+ | | height="200px" | [[Image:Cactus (((A),B,C)) Big.jpg|65px]] | ||
+ | | <math>\texttt{(((} a \texttt{)}, b, c \texttt{))}</math> | ||
+ | | | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{partition}~ a | ||
+ | \\ | ||
+ | \operatorname{into}~ b, c. | ||
+ | \end{matrix}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ==Differential Logic== | ||
+ | |||
+ | ===Ascii Tables=== | ||
<pre> | <pre> | ||
− | Table | + | Table A1. Propositional Forms On Two Variables |
− | o------ | + | o---------o---------o---------o----------o------------------o----------o |
− | | | + | | L_1 | L_2 | L_3 | L_4 | L_5 | L_6 | |
− | | | + | | | | | | | | |
− | | | + | | Decimal | Binary | Vector | Cactus | English | Ordinary | |
− | o------ | + | o---------o---------o---------o----------o------------------o----------o |
− | | | + | | | x : 1 1 0 0 | | | | |
− | | | + | | | y : 1 0 1 0 | | | | |
− | + | o---------o---------o---------o----------o------------------o----------o | |
− | o------ | + | | | | | | | | |
− | | | + | | f_0 | f_0000 | 0 0 0 0 | () | false | 0 | |
− | | | + | | | | | | | | |
− | | | + | | f_1 | f_0001 | 0 0 0 1 | (x)(y) | neither x nor y | ~x & ~y | |
− | | | + | | | | | | | | |
− | | | + | | f_2 | f_0010 | 0 0 1 0 | (x) y | y and not x | ~x & y | |
− | | | + | | | | | | | | |
− | | | + | | f_3 | f_0011 | 0 0 1 1 | (x) | not x | ~x | |
− | | | + | | | | | | | | |
− | | | + | | f_4 | f_0100 | 0 1 0 0 | x (y) | x and not y | x & ~y | |
− | + | | | | | | | | | |
− | | | + | | f_5 | f_0101 | 0 1 0 1 | (y) | not y | ~y | |
− | + | | | | | | | | | |
− | | | + | | f_6 | f_0110 | 0 1 1 0 | (x, y) | x not equal to y | x + y | |
− | | | + | | | | | | | | |
− | | | + | | f_7 | f_0111 | 0 1 1 1 | (x y) | not both x and y | ~x v ~y | |
− | + | | | | | | | | | |
− | | | + | | f_8 | f_1000 | 1 0 0 0 | x y | x and y | x & y | |
− | + | | | | | | | | | |
− | | | + | | f_9 | f_1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | |
− | | | + | | | | | | | | |
− | | | + | | f_10 | f_1010 | 1 0 1 0 | y | y | y | |
− | + | | | | | | | | | |
− | | | + | | f_11 | f_1011 | 1 0 1 1 | (x (y)) | not x without y | x => y | |
− | | | + | | | | | | | | |
− | | | + | | f_12 | f_1100 | 1 1 0 0 | x | x | x | |
− | | f_10 | + | | | | | | | | |
− | | | + | | f_13 | f_1101 | 1 1 0 1 | ((x) y) | not y without x | x <= y | |
− | + | | | | | | | | | |
− | | | + | | f_14 | f_1110 | 1 1 1 0 | ((x)(y)) | x or y | x v y | |
− | + | | | | | | | | | |
− | | | + | | f_15 | f_1111 | 1 1 1 1 | (()) | true | 1 | |
− | | | + | | | | | | | | |
− | | | + | o---------o---------o---------o----------o------------------o----------o |
− | | f_13 | ((x) y) | ||
− | | | ||
− | | f_14 | ((x)(y)) | ||
− | | | ||
− | |||
− | |||
− | | f_15 | | ||
− | | | ||
− | o------ | ||
</pre> | </pre> | ||
<pre> | <pre> | ||
− | Table | + | Table A2. Propositional Forms On Two Variables |
− | o------ | + | o---------o---------o---------o----------o------------------o----------o |
− | | | | + | | L_1 | L_2 | L_3 | L_4 | L_5 | L_6 | |
− | | | + | | | | | | | | |
− | | | + | | Decimal | Binary | Vector | Cactus | English | Ordinary | |
− | o------ | + | o---------o---------o---------o----------o------------------o----------o |
− | | | + | | | x : 1 1 0 0 | | | | |
− | | f_0 | | + | | | y : 1 0 1 0 | | | | |
− | | | + | o---------o---------o---------o----------o------------------o----------o |
− | o------ | + | | | | | | | | |
− | | | + | | f_0 | f_0000 | 0 0 0 0 | () | false | 0 | |
− | | f_1 | | + | | | | | | | | |
− | | | + | o---------o---------o---------o----------o------------------o----------o |
− | | f_2 | | + | | | | | | | | |
− | | | + | | f_1 | f_0001 | 0 0 0 1 | (x)(y) | neither x nor y | ~x & ~y | |
− | | f_4 | | + | | | | | | | | |
− | | | + | | f_2 | f_0010 | 0 0 1 0 | (x) y | y and not x | ~x & y | |
− | | f_8 | | + | | | | | | | | |
− | | | + | | f_4 | f_0100 | 0 1 0 0 | x (y) | x and not y | x & ~y | |
− | o------ | + | | | | | | | | |
− | | | + | | f_8 | f_1000 | 1 0 0 0 | x y | x and y | x & y | |
− | | f_3 | | + | | | | | | | | |
− | | | + | o---------o---------o---------o----------o------------------o----------o |
− | | f_12 | | + | | | | | | | | |
− | | | + | | f_3 | f_0011 | 0 0 1 1 | (x) | not x | ~x | |
− | o------ | + | | | | | | | | |
− | | | + | | f_12 | f_1100 | 1 1 0 0 | x | x | x | |
− | | f_6 | | + | | | | | | | | |
− | | | + | o---------o---------o---------o----------o------------------o----------o |
− | | | + | | | | | | | | |
− | | | + | | f_6 | f_0110 | 0 1 1 0 | (x, y) | x not equal to y | x + y | |
− | o------o------------o------------o------------o------------o------------o | + | | | | | | | | |
+ | | f_9 | f_1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | | ||
+ | | | | | | | | | ||
+ | o---------o---------o---------o----------o------------------o----------o | ||
+ | | | | | | | | | ||
+ | | f_5 | f_0101 | 0 1 0 1 | (y) | not y | ~y | | ||
+ | | | | | | | | | ||
+ | | f_10 | f_1010 | 1 0 1 0 | y | y | y | | ||
+ | | | | | | | | | ||
+ | o---------o---------o---------o----------o------------------o----------o | ||
+ | | | | | | | | | ||
+ | | f_7 | f_0111 | 0 1 1 1 | (x y) | not both x and y | ~x v ~y | | ||
+ | | | | | | | | | ||
+ | | f_11 | f_1011 | 1 0 1 1 | (x (y)) | not x without y | x => y | | ||
+ | | | | | | | | | ||
+ | | f_13 | f_1101 | 1 1 0 1 | ((x) y) | not y without x | x <= y | | ||
+ | | | | | | | | | ||
+ | | f_14 | f_1110 | 1 1 1 0 | ((x)(y)) | x or y | x v y | | ||
+ | | | | | | | | | ||
+ | o---------o---------o---------o----------o------------------o----------o | ||
+ | | | | | | | | | ||
+ | | f_15 | f_1111 | 1 1 1 1 | (()) | true | 1 | | ||
+ | | | | | | | | | ||
+ | o---------o---------o---------o----------o------------------o----------o | ||
+ | </pre> | ||
+ | |||
+ | <pre> | ||
+ | Table A3. Ef Expanded Over Differential Features {dx, dy} | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | | f | T_11 f | T_10 f | T_01 f | T_00 f | | ||
| | | | | | | | | | | | | | | | ||
− | | | + | | | | Ef| dx dy | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)| |
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
| | | | | | | | | | | | | | | | ||
− | | | + | | f_0 | () | () | () | () | () | |
| | | | | | | | | | | | | | | | ||
o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
| | | | | | | | | | | | | | | | ||
− | | | + | | f_1 | (x)(y) | x y | x (y) | (x) y | (x)(y) | |
| | | | | | | | | | | | | | | | ||
− | | | + | | f_2 | (x) y | x (y) | x y | (x)(y) | (x) y | |
| | | | | | | | | | | | | | | | ||
− | | | + | | f_4 | x (y) | (x) y | (x)(y) | x y | x (y) | |
| | | | | | | | | | | | | | | | ||
− | | | + | | f_8 | x y | (x)(y) | (x) y | x (y) | x y | |
| | | | | | | | | | | | | | | | ||
o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
| | | | | | | | | | | | | | | | ||
− | | | + | | f_3 | (x) | x | x | (x) | (x) | |
+ | | | | | | | | | ||
+ | | f_12 | x | (x) | (x) | x | x | | ||
| | | | | | | | | | | | | | | | ||
o------o------------o------------o------------o------------o------------o | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_6 | (x, y) | (x, y) | ((x, y)) | ((x, y)) | (x, y) | | ||
+ | | | | | | | | | ||
+ | | f_9 | ((x, y)) | ((x, y)) | (x, y) | (x, y) | ((x, y)) | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_5 | (y) | y | (y) | y | (y) | | ||
+ | | | | | | | | | ||
+ | | f_10 | y | (y) | y | (y) | y | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_7 | (x y) | ((x)(y)) | ((x) y) | (x (y)) | (x y) | | ||
+ | | | | | | | | | ||
+ | | f_11 | (x (y)) | ((x) y) | ((x)(y)) | (x y) | (x (y)) | | ||
+ | | | | | | | | | ||
+ | | f_13 | ((x) y) | (x (y)) | (x y) | ((x)(y)) | ((x) y) | | ||
+ | | | | | | | | | ||
+ | | f_14 | ((x)(y)) | (x y) | (x (y)) | ((x) y) | ((x)(y)) | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_15 | (()) | (()) | (()) | (()) | (()) | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | ||
+ | | Fixed Point Total | 4 | 4 | 4 | 16 | | ||
+ | | | | | | | | ||
+ | o-------------------o------------o------------o------------o------------o | ||
</pre> | </pre> | ||
<pre> | <pre> | ||
− | o----------o----------o----------o----------o----------o | + | Table A4. Df Expanded Over Differential Features {dx, dy} |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | | f | Df| dx dy | Df| dx(dy) | Df| (dx)dy | Df|(dx)(dy)| |
− | + | | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_0 | () | () | () | () | () | |
− | o----------o----------o----------o----------o----------o | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_1 | (x)(y) | ((x, y)) | (y) | (x) | () | |
− | o----------o----------o----------o----------o----------o | + | | | | | | | | |
− | | | + | | f_2 | (x) y | (x, y) | y | (x) | () | |
− | | | + | | | | | | | | |
− | | | + | | f_4 | x (y) | (x, y) | (y) | x | () | |
− | + | | | | | | | | | |
− | | | + | | f_8 | x y | ((x, y)) | y | x | () | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | o-------- | + | | | | | | | | |
− | + | | f_3 | (x) | (()) | (()) | () | () | | |
− | + | | | | | | | | | |
− | + | | f_12 | x | (()) | (()) | () | () | | |
− | + | | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_6 | (x, y) | () | (()) | (()) | () | |
− | + | | | | | | | | | |
− | | | + | | f_9 | ((x, y)) | () | (()) | (()) | () | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | o---------o---------o---------o---------o---------o | + | | | | | | | | |
− | | | + | | f_5 | (y) | (()) | () | (()) | () | |
− | | | + | | | | | | | | |
− | | | + | | f_10 | y | (()) | () | (()) | () | |
− | o--------- | + | | | | | | | | |
− | + | o------o------------o------------o------------o------------o------------o | |
− | + | | | | | | | | | |
− | + | | f_7 | (x y) | ((x, y)) | y | x | () | | |
− | + | | | | | | | | | |
− | | | + | | f_11 | (x (y)) | (x, y) | (y) | x | () | |
− | | | + | | | | | | | | |
− | | | + | | f_13 | ((x) y) | (x, y) | y | (x) | () | |
− | o | + | | | | | | | | |
− | + | | f_14 | ((x)(y)) | ((x, y)) | (y) | (x) | () | | |
− | + | | | | | | | | | |
− | + | o------o------------o------------o------------o------------o------------o | |
− | + | | | | | | | | | |
− | + | | f_15 | (()) | () | () | () | () | | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | ||
− | |||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | o--------- | ||
</pre> | </pre> | ||
<pre> | <pre> | ||
− | + | Table A5. Ef Expanded Over Ordinary Features {x, y} | |
− | o---------o---------o---------o---------o---------o---------o | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | | f | Ef | xy | Ef | x(y) | Ef | (x)y | Ef | (x)(y)| |
− | | | + | | | | | | | | |
− | o | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_0 | () | () | () | () | () | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | o---------o---------o---------o---------o---------o---------o | + | | f_1 | (x)(y) | dx dy | dx (dy) | (dx) dy | (dx)(dy) | |
+ | | | | | | | | | ||
+ | | f_2 | (x) y | dx (dy) | dx dy | (dx)(dy) | (dx) dy | | ||
+ | | | | | | | | | ||
+ | | f_4 | x (y) | (dx) dy | (dx)(dy) | dx dy | dx (dy) | | ||
+ | | | | | | | | | ||
+ | | f_8 | x y | (dx)(dy) | (dx) dy | dx (dy) | dx dy | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_3 | (x) | dx | dx | (dx) | (dx) | | ||
+ | | | | | | | | | ||
+ | | f_12 | x | (dx) | (dx) | dx | dx | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_6 | (x, y) | (dx, dy) | ((dx, dy)) | ((dx, dy)) | (dx, dy) | | ||
+ | | | | | | | | | ||
+ | | f_9 | ((x, y)) | ((dx, dy)) | (dx, dy) | (dx, dy) | ((dx, dy)) | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_5 | (y) | dy | (dy) | dy | (dy) | | ||
+ | | | | | | | | | ||
+ | | f_10 | y | (dy) | dy | (dy) | dy | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_7 | (x y) | ((dx)(dy)) | ((dx) dy) | (dx (dy)) | (dx dy) | | ||
+ | | | | | | | | | ||
+ | | f_11 | (x (y)) | ((dx) dy) | ((dx)(dy)) | (dx dy) | (dx (dy)) | | ||
+ | | | | | | | | | ||
+ | | f_13 | ((x) y) | (dx (dy)) | (dx dy) | ((dx)(dy)) | ((dx) dy) | | ||
+ | | | | | | | | | ||
+ | | f_14 | ((x)(y)) | (dx dy) | (dx (dy)) | ((dx) dy) | ((dx)(dy)) | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_15 | (()) | (()) | (()) | (()) | (()) | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
</pre> | </pre> | ||
<pre> | <pre> | ||
− | + | Table A6. Df Expanded Over Ordinary Features {x, y} | |
− | o-------------------------------------------------o | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | | f | Df | xy | Df | x(y) | Df | (x)y | Df | (x)(y)| |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_0 | () | () | () | () | () | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_1 | (x)(y) | dx dy | dx (dy) | (dx) dy | ((dx)(dy)) | |
− | | | + | | | | | | | | |
− | | | + | | f_2 | (x) y | dx (dy) | dx dy | ((dx)(dy)) | (dx) dy | |
− | | | + | | | | | | | | |
− | | | + | | f_4 | x (y) | (dx) dy | ((dx)(dy)) | dx dy | dx (dy) | |
− | | | + | | | | | | | | |
− | | | + | | f_8 | x y | ((dx)(dy)) | (dx) dy | dx (dy) | dx dy | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | ( | + | | f_3 | (x) | dx | dx | dx | dx | |
− | | | + | | | | | | | | |
− | | | + | | f_12 | x | dx | dx | dx | dx | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_6 | (x, y) | (dx, dy) | (dx, dy) | (dx, dy) | (dx, dy) | |
− | | | + | | | | | | | | |
− | | | + | | f_9 | ((x, y)) | (dx, dy) | (dx, dy) | (dx, dy) | (dx, dy) | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_5 | (y) | dy | dy | dy | dy | |
− | | | + | | | | | | | | |
− | | | + | | f_10 | y | dy | dy | dy | dy | |
− | | | + | | | | | | | | |
− | | | + | o------o------------o------------o------------o------------o------------o |
− | | | + | | | | | | | | |
− | | | + | | f_7 | (x y) | ((dx)(dy)) | (dx) dy | dx (dy) | dx dy | |
− | | | + | | | | | | | | |
− | o-------------------------------------------------o | + | | f_11 | (x (y)) | (dx) dy | ((dx)(dy)) | dx dy | dx (dy) | |
+ | | | | | | | | | ||
+ | | f_13 | ((x) y) | dx (dy) | dx dy | ((dx)(dy)) | (dx) dy | | ||
+ | | | | | | | | | ||
+ | | f_14 | ((x)(y)) | dx dy | dx (dy) | (dx) dy | ((dx)(dy)) | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
+ | | | | | | | | | ||
+ | | f_15 | (()) | () | () | () | () | | ||
+ | | | | | | | | | ||
+ | o------o------------o------------o------------o------------o------------o | ||
</pre> | </pre> | ||
− | === | + | <pre> |
− | + | o----------o----------o----------o----------o----------o | |
− | ==== | + | | % | | | | |
− | + | | · % T_00 | T_01 | T_10 | T_11 | | |
− | + | | % | | | | | |
− | + | o==========o==========o==========o==========o==========o | |
− | + | | % | | | | | |
− | | | + | | T_00 % T_00 | T_01 | T_10 | T_11 | |
− | |- | + | | % | | | | |
− | + | o----------o----------o----------o----------o----------o | |
− | + | | % | | | | | |
− | + | | T_01 % T_01 | T_00 | T_11 | T_10 | | |
− | + | | % | | | | | |
− | + | o----------o----------o----------o----------o----------o | |
− | + | | % | | | | | |
− | + | | T_10 % T_10 | T_11 | T_00 | T_01 | | |
− | | | + | | % | | | | |
− | | | + | o----------o----------o----------o----------o----------o |
− | | | + | | % | | | | |
− | | | + | | T_11 % T_11 | T_10 | T_01 | T_00 | |
− | | | + | | % | | | | |
− | | | + | o----------o----------o----------o----------o----------o |
− | + | </pre> | |
− | | | + | |
− | | | + | <pre> |
− | | | + | o---------o---------o---------o---------o---------o |
− | | | + | | % | | | | |
− | | | + | | · % e | f | g | h | |
− | | | + | | % | | | | |
− | + | o=========o=========o=========o=========o=========o | |
− | | | + | | % | | | | |
− | | f | + | | e % e | f | g | h | |
− | | | + | | % | | | | |
− | | | + | o---------o---------o---------o---------o---------o |
− | | | + | | % | | | | |
− | | | + | | f % f | e | h | g | |
− | + | | % | | | | | |
− | + | o---------o---------o---------o---------o---------o | |
− | + | | % | | | | | |
− | | | + | | g % g | h | e | f | |
− | | | + | | % | | | | |
− | | | + | o---------o---------o---------o---------o---------o |
− | | | + | | % | | | | |
− | | | + | | h % h | g | f | e | |
− | | | + | | % | | | | |
− | | | + | o---------o---------o---------o---------o---------o |
− | | | + | </pre> |
− | | | + | |
− | | | + | <pre> |
− | | | + | Permutation Substitutions in Sym {A, B, C} |
− | + | o---------o---------o---------o---------o---------o---------o | |
− | + | | | | | | | | | |
− | + | | e | f | g | h | i | j | | |
− | + | | | | | | | | | |
− | + | o=========o=========o=========o=========o=========o=========o | |
− | | | + | | | | | | | | |
− | | | + | | A B C | A B C | A B C | A B C | A B C | A B C | |
− | | | + | | | | | | | | |
− | | | + | | | | | | | | | | | | | | | | | | | | | | | | | | |
− | | | + | | v v v | v v v | v v v | v v v | v v v | v v v | |
− | | 0 1 0 0 | + | | | | | | | | |
− | | | + | | A B C | C A B | B C A | A C B | C B A | B A C | |
− | | | + | | | | | | | | |
− | | | + | o---------o---------o---------o---------o---------o---------o |
− | | | + | </pre> |
− | | | + | |
− | | | + | <pre> |
− | | 0 1 0 1 | + | Matrix Representations of Permutations in Sym(3) |
− | | | + | o---------o---------o---------o---------o---------o---------o |
− | | | + | | | | | | | | |
− | | | + | | e | f | g | h | i | j | |
− | | | + | | | | | | | | |
− | | | + | o=========o=========o=========o=========o=========o=========o |
− | | | + | | | | | | | | |
− | | 0 1 1 0 | + | | 1 0 0 | 0 0 1 | 0 1 0 | 1 0 0 | 0 0 1 | 0 1 0 | |
− | | | + | | 0 1 0 | 1 0 0 | 0 0 1 | 0 0 1 | 0 1 0 | 1 0 0 | |
− | | | + | | 0 0 1 | 0 1 0 | 1 0 0 | 0 1 0 | 1 0 0 | 0 0 1 | |
− | | | + | | | | | | | | |
− | + | o---------o---------o---------o---------o---------o---------o | |
− | + | </pre> | |
− | + | ||
− | | | + | <pre> |
− | | | + | Symmetric Group S_3 |
− | | | + | o-------------------------------------------------o |
− | | | + | | | |
− | | | + | | ^ | |
− | | f | + | | e / \ e | |
− | | | + | | / \ | |
− | | | + | | / e \ | |
− | | | + | | f / \ / \ f | |
− | | | + | | / \ / \ | |
− | | | + | | / f \ f \ | |
− | | | + | | g / \ / \ / \ g | |
− | | | + | | / \ / \ / \ | |
− | | | + | | / g \ g \ g \ | |
− | | | + | | h / \ / \ / \ / \ h | |
− | | | + | | / \ / \ / \ / \ | |
− | | | + | | / h \ e \ e \ h \ | |
− | | | + | | i / \ / \ / \ / \ / \ i | |
− | | | + | | / \ / \ / \ / \ / \ | |
− | | | + | | / i \ i \ f \ j \ i \ | |
− | | | + | | j / \ / \ / \ / \ / \ / \ j | |
− | | | + | | / \ / \ / \ / \ / \ / \ | |
− | | | + | | ( j \ j \ j \ i \ h \ j ) | |
− | | | + | | \ / \ / \ / \ / \ / \ / | |
− | | | + | | \ / \ / \ / \ / \ / \ / | |
− | | | + | | \ h \ h \ e \ j \ i / | |
− | | | + | | \ / \ / \ / \ / \ / | |
− | | | + | | \ / \ / \ / \ / \ / | |
− | | | + | | \ i \ g \ f \ h / | |
− | | ( | + | | \ / \ / \ / \ / | |
− | | | + | | \ / \ / \ / \ / | |
− | | | + | | \ f \ e \ g / | |
− | | | + | | \ / \ / \ / | |
− | | | + | | \ / \ / \ / | |
− | | | + | | \ g \ f / | |
− | | | + | | \ / \ / | |
− | | | + | | \ / \ / | |
− | | | + | | \ e / | |
− | | | + | | \ / | |
− | | | + | | \ / | |
− | | | + | | v | |
− | | f | + | | | |
− | | | + | o-------------------------------------------------o |
− | | | + | </pre> |
− | | | + | |
− | | | + | ===Wiki Tables : New Versions=== |
− | | | + | |
− | | f | + | ====Propositional Forms on Two Variables==== |
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<br> | <br> | ||
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:90%" | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:90%" | ||
− | |+ '''Table | + | |+ '''Table A1. Propositional Forms on Two Variables''' |
|- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
! width="15%" | L<sub>1</sub> | ! width="15%" | L<sub>1</sub> | ||
Line 634: | Line 1,242: | ||
| 0 | | 0 | ||
|- | |- | ||
− | | | + | | f<sub>1</sub> |
− | + | | f<sub>0001</sub> | |
− | + | | 0 0 0 1 | |
− | + | | (x)(y) | |
− | + | | neither x nor y | |
− | + | | ¬x ∧ ¬y | |
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | f<sub>2</sub> |
− | + | | f<sub>0010</sub> | |
− | + | | 0 0 1 0 | |
− | + | | (x) y | |
− | + | | y and not x | |
− | + | | ¬x ∧ y | |
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | f<sub>3</sub> |
− | + | | f<sub>0011</sub> | |
− | + | | 0 0 1 1 | |
− | + | | (x) | |
− | + | | not x | |
− | | | + | | ¬x |
− | | | + | |- |
− | + | | f<sub>4</sub> | |
− | | | + | | f<sub>0100</sub> |
− | + | | 0 1 0 0 | |
− | + | | x (y) | |
− | | | + | | x and not y |
− | + | | x ∧ ¬y | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | f<sub>5</sub> |
− | + | | f<sub>0101</sub> | |
− | + | | 0 1 0 1 | |
− | + | | (y) | |
− | + | | not y | |
− | | | + | | ¬y |
− | | | + | |- |
− | + | | f<sub>6</sub> | |
− | | | + | | f<sub>0110</sub> |
− | + | | 0 1 1 0 | |
− | + | | (x, y) | |
− | + | | x not equal to y | |
− | + | | x ≠ y | |
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | f<sub>7</sub> |
− | + | | f<sub>0111</sub> | |
− | + | | 0 1 1 1 | |
− | + | | (x y) | |
− | + | | not both x and y | |
− | + | | ¬x ∨ ¬y | |
− | + | |- | |
− | + | | f<sub>8</sub> | |
− | + | | f<sub>1000</sub> | |
− | + | | 1 0 0 0 | |
− | + | | x y | |
− | + | | x and y | |
− | + | | x ∧ y | |
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | < | ||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | f<sub> | + | | f<sub>9</sub> |
− | | f<sub> | + | | f<sub>1001</sub> |
− | | 1 | + | | 1 0 0 1 |
− | | (( | + | | ((x, y)) |
− | | | + | | x equal to y |
− | | | + | | x = y |
− | | | + | |- |
− | + | | f<sub>10</sub> | |
− | < | + | | f<sub>1010</sub> |
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| 1 0 1 0 | | 1 0 1 0 | ||
− | | | + | | y |
− | | | + | | y |
− | | | + | | y |
|- | |- | ||
− | | f<sub> | + | | f<sub>11</sub> |
− | | | + | | f<sub>1011</sub> |
− | | 0 | + | | 1 0 1 1 |
− | | ( | + | | (x (y)) |
− | | | + | | not x without y |
− | | | + | | x ⇒ y |
|- | |- | ||
− | | | + | | f<sub>12</sub> |
− | + | | f<sub>1100</sub> | |
− | + | | 1 1 0 0 | |
− | + | | x | |
− | + | | x | |
− | + | | x | |
− | + | |- | |
− | | | + | | f<sub>13</sub> |
− | | | + | | f<sub>1101</sub> |
− | + | | 1 1 0 1 | |
− | | | + | | ((x) y) |
− | + | | not y without x | |
− | + | | x ⇐ y | |
− | + | |- | |
− | + | | f<sub>14</sub> | |
− | | | + | | f<sub>1110</sub> |
− | | | + | | 1 1 1 0 |
− | + | | ((x)(y)) | |
− | | | + | | x or y |
− | + | | x ∨ y | |
− | + | |- | |
− | + | | f<sub>15</sub> | |
− | 1 | + | | f<sub>1111</sub> |
+ | | 1 1 1 1 | ||
+ | | (( )) | ||
+ | | true || 1 | ||
|} | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table A2. Propositional Forms on Two Variables''' | ||
+ | |- style="background:#f0f0ff" | ||
+ | ! width="15%" | L<sub>1</sub> | ||
+ | ! width="15%" | L<sub>2</sub> | ||
+ | ! width="15%" | L<sub>3</sub> | ||
+ | ! width="15%" | L<sub>4</sub> | ||
+ | ! width="25%" | L<sub>5</sub> | ||
+ | ! width="15%" | L<sub>6</sub> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | x : | ||
+ | | 1 1 0 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | y : | ||
+ | | 1 0 1 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | f<sub>0</sub> | ||
+ | | f<sub>0000</sub> | ||
+ | | 0 0 0 0 | ||
+ | | ( ) | ||
+ | | false | ||
+ | | 0 | ||
+ | |- | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>1</sub></p> | |
− | + | <p>f<sub>2</sub></p> | |
− | + | <p>f<sub>4</sub></p> | |
− | + | <p>f<sub>8</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>0001</sub></p> | |
− | + | <p>f<sub>0010</sub></p> | |
− | + | <p>f<sub>0100</sub></p> | |
− | + | <p>f<sub>1000</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>0 0 0 1</p> | |
− | + | <p>0 0 1 0</p> | |
− | + | <p>0 1 0 0</p> | |
− | + | <p>1 0 0 0</p> | |
|} | |} | ||
− | |||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>(x)(y)</p> | |
− | + | <p>(x) y </p> | |
+ | <p> x (y)</p> | ||
+ | <p> x y </p> | ||
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>neither x nor y</p> | |
− | + | <p>not x but y</p> | |
+ | <p>x but not y</p> | ||
+ | <p>x and y</p> | ||
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>¬x ∧ ¬y</p> | |
− | + | <p>¬x ∧ y</p> | |
+ | <p>x ∧ ¬y</p> | ||
+ | <p>x ∧ y</p> | ||
|} | |} | ||
+ | |- | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>3</sub></p> | |
− | + | <p>f<sub>12</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>0011</sub></p> | |
− | + | <p>f<sub>1100</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>0 0 1 1</p> | |
− | + | <p>1 1 0 0</p> | |
|} | |} | ||
− | |||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>(x)</p> | |
− | + | <p> x </p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>not x</p> | |
− | + | <p>x</p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>¬x</p> | |
− | + | <p>x</p> | |
|} | |} | ||
+ | |- | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>6</sub></p> | |
− | + | <p>f<sub>9</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>0110</sub></p> | |
− | + | <p>f<sub>1001</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>0 1 1 0</p> | |
− | + | <p>1 0 0 1</p> | |
|} | |} | ||
− | |||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p> (x, y) </p> | |
− | + | <p>((x, y))</p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>x not equal to y</p> | |
− | + | <p>x equal to y</p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>x ≠ y</p> | |
− | + | <p>x = y</p> | |
|} | |} | ||
+ | |- | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>5</sub></p> | |
− | + | <p>f<sub>10</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>f<sub>0101</sub></p> | |
− | + | <p>f<sub>1010</sub></p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>0 1 0 1</p> | |
− | + | <p>1 0 1 0</p> | |
|} | |} | ||
− | |||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>(y)</p> | |
− | + | <p> y </p> | |
− | |||
− | |||
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>not y</p> | |
− | + | <p>y</p> | |
− | |||
− | |||
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>¬y</p> | |
− | + | <p>y</p> | |
− | |||
− | |||
|} | |} | ||
+ | |- | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | ( | + | <p>f<sub>7</sub></p> |
− | ( | + | <p>f<sub>11</sub></p> |
− | (( | + | <p>f<sub>13</sub></p> |
− | (( | + | <p>f<sub>14</sub></p> |
+ | |} | ||
+ | | | ||
+ | {| align="center" | ||
+ | | | ||
+ | <p>f<sub>0111</sub></p> | ||
+ | <p>f<sub>1011</sub></p> | ||
+ | <p>f<sub>1101</sub></p> | ||
+ | <p>f<sub>1110</sub></p> | ||
+ | |} | ||
+ | | | ||
+ | {| align="center" | ||
+ | | | ||
+ | <p>0 1 1 1</p> | ||
+ | <p>1 0 1 1</p> | ||
+ | <p>1 1 0 1</p> | ||
+ | <p>1 1 1 0</p> | ||
+ | |} | ||
+ | | | ||
+ | {| align="center" | ||
+ | | | ||
+ | <p>(x y)</p> | ||
+ | <p>(x (y))</p> | ||
+ | <p>((x) y)</p> | ||
+ | <p>((x)(y))</p> | ||
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | + | <p>not both x and y</p> | |
− | + | <p>not x without y</p> | |
− | + | <p>not y without x</p> | |
− | + | <p>x or y</p> | |
|} | |} | ||
| | | | ||
− | {| | + | {| align="center" |
| | | | ||
− | ¬ | + | <p>¬x ∨ ¬y</p> |
− | + | <p>x ⇒ y</p> | |
− | + | <p>x ⇐ y</p> | |
− | + | <p>x ∨ y</p> | |
|} | |} | ||
|- | |- | ||
− | | f<sub> | + | | f<sub>15</sub> |
− | | | + | | f<sub>1111</sub> |
| 1 1 1 1 | | 1 1 1 1 | ||
| (( )) | | (( )) | ||
− | | | + | | true |
| 1 | | 1 | ||
|} | |} | ||
Line 1,100: | Line 1,599: | ||
<br> | <br> | ||
− | === | + | ====Differential Propositions==== |
− | |||
− | |||
<br> | <br> | ||
− | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:90%" |
− | |+ '''Table | + | |+ '''Table 14. Differential Propositions''' |
− | |- style="background: | + | |- style="background:#f0f0ff" |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | | align="right" | | + | | align="right" | A : |
| 1 1 0 0 | | 1 1 0 0 | ||
| | | | ||
| | | | ||
| | | | ||
− | |- style="background: | + | |- style="background:#f0f0ff" |
| | | | ||
− | | align="right" | | + | | align="right" | dA : |
| 1 0 1 0 | | 1 0 1 0 | ||
| | | | ||
Line 1,130: | Line 1,620: | ||
| | | | ||
|- | |- | ||
− | | f<sub>0</sub> | | + | | f<sub>0</sub> |
+ | | g<sub>0</sub> | ||
+ | | 0 0 0 0 | ||
+ | | ( ) | ||
+ | | False | ||
+ | | 0 | ||
|- | |- | ||
− | | | + | | |
− | + | {| | |
− | + | | | |
− | + | <br> | |
− | + | <br> | |
− | | | + | <br> |
− | | | + | |
− | | | + | |} |
− | + | | | |
− | + | {| | |
− | + | | | |
− | + | g<sub>1</sub><br> | |
− | + | g<sub>2</sub><br> | |
− | + | g<sub>4</sub><br> | |
− | + | g<sub>8</sub> | |
− | + | |} | |
− | + | | | |
− | + | {| | |
− | + | | | |
− | | | + | 0 0 0 1<br> |
− | + | 0 0 1 0<br> | |
− | + | 0 1 0 0<br> | |
− | + | 1 0 0 0 | |
− | | | + | |} |
− | + | | | |
− | + | {| | |
− | + | | | |
− | + | (A)(dA)<br> | |
− | + | (A) dA <br> | |
+ | A (dA)<br> | ||
+ | A dA | ||
+ | |} | ||
+ | | | ||
+ | {| | ||
+ | | | ||
+ | Neither A nor dA<br> | ||
+ | Not A but dA<br> | ||
+ | A but not dA<br> | ||
+ | A and dA | ||
+ | |} | ||
+ | | | ||
+ | {| | ||
+ | | | ||
+ | ¬A ∧ ¬dA<br> | ||
+ | ¬A ∧ dA<br> | ||
+ | A ∧ ¬dA<br> | ||
+ | A ∧ dA | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
{| | {| | ||
| | | | ||
− | + | f<sub>1</sub><br> | |
− | + | f<sub>2</sub> | |
− | |||
− | |||
|} | |} | ||
| | | | ||
{| | {| | ||
| | | | ||
− | g<sub> | + | g<sub>3</sub><br> |
− | g<sub> | + | g<sub>12</sub> |
− | |||
− | |||
|} | |} | ||
| | | | ||
{| | {| | ||
| | | | ||
− | + | 0 0 1 1<br> | |
− | + | 1 1 0 0 | |
− | |||
− | 1 | ||
|} | |} | ||
| | | | ||
{| | {| | ||
| | | | ||
− | + | (A)<br> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | (A)<br> | ||
A | A | ||
|} | |} | ||
Line 1,397: | Line 1,831: | ||
| | | | ||
¬A ∨ ¬dA<br> | ¬A ∨ ¬dA<br> | ||
− | A & | + | A ⇒ dA<br> |
− | A & | + | A ⇐ dA<br> |
A ∨ dA | A ∨ dA | ||
|} | |} | ||
Line 1,412: | Line 1,846: | ||
<br> | <br> | ||
− | ===Wiki | + | ===Wiki Tables : Old Versions=== |
+ | |||
+ | ====Propositional Forms on Two Variables==== | ||
<br> | <br> | ||
− | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" |
− | |+ | + | |+ '''Table 1. Propositional Forms on Two Variables''' |
− | |- style="background: | + | |- style="background:paleturquoise" |
− | + | ! width="15%" | L<sub>1</sub> | |
− | + | ! width="15%" | L<sub>2</sub> | |
− | + | ! width="15%" | L<sub>3</sub> | |
− | + | ! width="15%" | L<sub>4</sub> | |
− | + | ! width="25%" | L<sub>5</sub> | |
− | + | ! width="15%" | L<sub>6</sub> | |
− | + | |- style="background:paleturquoise" | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |- style="background: | ||
| | | | ||
− | | align="right" | | + | | align="right" | x : |
− | | | + | | 1 1 0 0 |
| | | | ||
| | | | ||
| | | | ||
− | |- style="background: | + | |- style="background:paleturquoise" |
| | | | ||
− | | align="right" | | + | | align="right" | y : |
− | | | + | | 1 0 1 0 |
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | < | + | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 |
− | | < | + | |- |
− | | | + | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y |
− | | | ||
− | | < | ||
− | | < | ||
|- | |- | ||
− | | < | + | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y |
− | | < | + | |- |
− | | | + | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x |
− | | | ||
− | | < | ||
− | | < | ||
|- | |- | ||
− | | < | + | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y || x ∨ y |
− | | < | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
|- | |- | ||
− | | < | + | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 |
− | | | + | |} |
− | | < | + | |
− | | | + | <br> |
− | | | + | |
− | + | ====Differential Propositions==== | |
− | + | ||
− | + | <br> | |
− | + | ||
− | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | |
− | | | + | |+ '''Table 14. Differential Propositions''' |
− | | | + | |- style="background:ghostwhite" |
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <br> | ||
− | |||
− | {| align="center" border="1" cellpadding=" | ||
− | |+ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |- style="background: | ||
| | | | ||
− | | align="right" | | + | | align="right" | A : |
− | | | + | | 1 1 0 0 |
| | | | ||
| | | | ||
| | | | ||
− | |- style="background: | + | |- style="background:ghostwhite" |
| | | | ||
− | | align="right" | | + | | align="right" | dA : |
− | | | + | | 1 0 1 0 |
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
+ | | f<sub>0</sub> | ||
+ | | g<sub>0</sub> | ||
+ | | 0 0 0 0 | ||
+ | | ( ) | ||
+ | | False | ||
+ | | 0 | ||
+ | |- | ||
+ | | | ||
+ | {| | ||
| | | | ||
− | < | + | <br> |
− | + | <br> | |
− | + | <br> | |
− | + | | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | g<sub>1</sub><br> |
− | + | g<sub>2</sub><br> | |
− | + | g<sub>4</sub><br> | |
− | + | g<sub>8</sub> | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | 0 0 0 1<br> |
− | 0 | + | 0 0 1 0<br> |
− | + | 0 1 0 0<br> | |
− | + | 1 0 0 0 | |
− | + | |} | |
− | + | | | |
− | + | {| | |
− | + | | | |
− | + | (A)(dA)<br> | |
− | + | (A) dA <br> | |
− | + | A (dA)<br> | |
− | + | A dA | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | | | ||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | Neither A nor dA<br> |
− | + | Not A but dA<br> | |
− | + | A but not dA<br> | |
− | + | A and dA | |
− | + | |} | |
− | + | | | |
− | + | {| | |
− | + | | | |
− | + | ¬A ∧ ¬dA<br> | |
− | + | ¬A ∧ dA<br> | |
− | + | A ∧ ¬dA<br> | |
− | + | A ∧ dA | |
− | + | |} | |
− | + | |- | |
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | f<sub>1</sub><br> |
− | + | f<sub>2</sub> | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | g<sub>3</sub><br> |
− | + | g<sub>12</sub> | |
− | + | |} | |
− | + | | | |
− | + | {| | |
− | + | | | |
− | + | 0 0 1 1<br> | |
− | + | 1 1 0 0 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | 1 | ||
− | |||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | (A)<br> |
− | + | A | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | Not A<br> |
− | + | A | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | ¬A<br> |
− | + | A | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | {| | |
− | + | | | |
− | + | <br> | |
− | + | | |
− | + | |} | |
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | g<sub>6</sub><br> |
− | + | g<sub>9</sub> | |
− | + | |} | |
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | 0 1 1 0<br> |
− | + | 1 0 0 1 | |
− | + | |} | |
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | | | ||
| | | | ||
− | < | + | (A, dA)<br> |
− | + | ((A, dA)) | |
− | + | |} | |
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | A not equal to dA<br> |
− | + | A equal to dA | |
− | + | |} | |
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | A ≠ dA<br> |
− | + | A = dA | |
− | + | |} | |
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | <br> |
− | + | | |
− | + | |} | |
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | g<sub>5</sub><br> |
− | + | g<sub>10</sub> | |
− | + | |} | |
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | 0 1 0 1<br> |
− | + | 1 0 1 0 | |
− | + | |} | |
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | (dA)<br> |
− | + | dA | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | Not dA<br> |
− | + | dA | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | ¬dA<br> |
− | + | dA | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | |
− | | | + | {| |
− | + | | | |
− | + | <br> | |
− | + | <br> | |
− | + | <br> | |
+ | | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | g<sub>7</sub><br> |
− | + | g<sub>11</sub><br> | |
− | + | g<sub>13</sub><br> | |
− | + | g<sub>14</sub> | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | 0 1 1 1<br> |
− | + | 1 0 1 1<br> | |
− | + | 1 1 0 1<br> | |
− | + | 1 1 1 0 | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | (A dA)<br> |
− | ( | + | (A (dA))<br> |
− | + | ((A) dA)<br> | |
− | ( | + | ((A)(dA)) |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | Not both A and dA<br> |
− | + | Not A without dA<br> | |
− | + | Not dA without A<br> | |
− | + | A or dA | |
− | + | |} | |
| | | | ||
− | + | {| | |
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | <math>\ | + | ¬A ∨ ¬dA<br> |
− | ~ | + | A → dA<br> |
− | \\ | + | A ← dA<br> |
− | + | A ∨ dA | |
− | \ | + | |} |
− | | | + | |- |
− | <math>\ | + | | f<sub>3</sub> |
− | + | | g<sub>15</sub> | |
− | \\ | + | | 1 1 1 1 |
− | + | | (( )) | |
− | \ | + | | True |
− | | | + | | 1 |
− | <math>\ | + | |} |
− | + | ||
− | \\ | + | <br> |
− | ~ | + | |
− | \ | + | ===Wiki TeX Tables : PQ=== |
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_1</math></p> | ||
+ | <p><math>\text{Decimal}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_2</math></p> | ||
+ | <p><math>\text{Binary}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_3</math></p> | ||
+ | <p><math>\text{Vector}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_4</math></p> | ||
+ | <p><math>\text{Cactus}</math></p> | ||
+ | | width="25%" | | ||
+ | <p><math>\mathcal{L}_5</math></p> | ||
+ | <p><math>\text{English}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_6</math></p> | ||
+ | <p><math>\text{Ordinary}</math></p> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>p\colon\!</math> | ||
+ | | <math>1~1~0~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>q\colon\!</math> | ||
+ | | <math>1~0~1~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
|- | |- | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_0 | |
+ | \\[4pt] | ||
+ | f_1 | ||
\\[4pt] | \\[4pt] | ||
− | + | f_2 | |
− | \ | + | \\[4pt] |
− | + | f_3 | |
− | + | \\[4pt] | |
− | + | f_4 | |
+ | \\[4pt] | ||
+ | f_5 | ||
+ | \\[4pt] | ||
+ | f_6 | ||
\\[4pt] | \\[4pt] | ||
− | + | f_7 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{0000} | |
+ | \\[4pt] | ||
+ | f_{0001} | ||
+ | \\[4pt] | ||
+ | f_{0010} | ||
+ | \\[4pt] | ||
+ | f_{0011} | ||
+ | \\[4pt] | ||
+ | f_{0100} | ||
+ | \\[4pt] | ||
+ | f_{0101} | ||
+ | \\[4pt] | ||
+ | f_{0110} | ||
\\[4pt] | \\[4pt] | ||
− | + | f_{0111} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 0~0~0~0 | |
+ | \\[4pt] | ||
+ | 0~0~0~1 | ||
+ | \\[4pt] | ||
+ | 0~0~1~0 | ||
+ | \\[4pt] | ||
+ | 0~0~1~1 | ||
+ | \\[4pt] | ||
+ | 0~1~0~0 | ||
+ | \\[4pt] | ||
+ | 0~1~0~1 | ||
+ | \\[4pt] | ||
+ | 0~1~1~0 | ||
\\[4pt] | \\[4pt] | ||
− | ~ | + | 0~1~1~1 |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (~) |
\\[4pt] | \\[4pt] | ||
− | + | (p)(q) | |
− | |||
− | |||
− | |||
− | |||
\\[4pt] | \\[4pt] | ||
− | (( | + | (p)~q~ |
+ | \\[4pt] | ||
+ | (p)~~~ | ||
+ | \\[4pt] | ||
+ | ~p~(q) | ||
+ | \\[4pt] | ||
+ | ~~~(q) | ||
+ | \\[4pt] | ||
+ | (p,~q) | ||
+ | \\[4pt] | ||
+ | (p~~q) | ||
\end{matrix}</math> | \end{matrix}</math> | ||
− | |||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \text{false} | |
+ | \\[4pt] | ||
+ | \text{neither}~ p ~\text{nor}~ q | ||
+ | \\[4pt] | ||
+ | q ~\text{without}~ p | ||
+ | \\[4pt] | ||
+ | \text{not}~ p | ||
+ | \\[4pt] | ||
+ | p ~\text{without}~ q | ||
+ | \\[4pt] | ||
+ | \text{not}~ q | ||
+ | \\[4pt] | ||
+ | p ~\text{not equal to}~ q | ||
\\[4pt] | \\[4pt] | ||
− | + | \text{not both}~ p ~\text{and}~ q | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 0 | |
+ | \\[4pt] | ||
+ | \lnot p \land \lnot q | ||
+ | \\[4pt] | ||
+ | \lnot p \land q | ||
\\[4pt] | \\[4pt] | ||
− | + | \lnot p | |
− | \ | ||
− | |||
− | |||
− | |||
\\[4pt] | \\[4pt] | ||
− | + | p \land \lnot q | |
− | \ | ||
− | |||
− | |||
− | |||
\\[4pt] | \\[4pt] | ||
− | + | \lnot q | |
− | \ | ||
− | |||
− | |||
− | |||
\\[4pt] | \\[4pt] | ||
− | + | p \ne q | |
− | \ | ||
− | |||
− | |||
− | |||
\\[4pt] | \\[4pt] | ||
− | + | \lnot p \lor \lnot q | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_8 | |
+ | \\[4pt] | ||
+ | f_9 | ||
+ | \\[4pt] | ||
+ | f_{10} | ||
\\[4pt] | \\[4pt] | ||
f_{11} | f_{11} | ||
+ | \\[4pt] | ||
+ | f_{12} | ||
\\[4pt] | \\[4pt] | ||
f_{13} | f_{13} | ||
\\[4pt] | \\[4pt] | ||
f_{14} | f_{14} | ||
+ | \\[4pt] | ||
+ | f_{15} | ||
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{1000} | |
+ | \\[4pt] | ||
+ | f_{1001} | ||
+ | \\[4pt] | ||
+ | f_{1010} | ||
+ | \\[4pt] | ||
+ | f_{1011} | ||
+ | \\[4pt] | ||
+ | f_{1100} | ||
\\[4pt] | \\[4pt] | ||
− | + | f_{1101} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1110} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1111} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 1~0~0~0 | |
+ | \\[4pt] | ||
+ | 1~0~0~1 | ||
+ | \\[4pt] | ||
+ | 1~0~1~0 | ||
+ | \\[4pt] | ||
+ | 1~0~1~1 | ||
+ | \\[4pt] | ||
+ | 1~1~0~0 | ||
\\[4pt] | \\[4pt] | ||
− | + | 1~1~0~1 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~1~1~0 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~1~1~1 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (( | + | ~~p~~q~~ |
+ | \\[4pt] | ||
+ | ((p,~q)) | ||
+ | \\[4pt] | ||
+ | ~~~~~q~~ | ||
+ | \\[4pt] | ||
+ | ~(p~(q)) | ||
+ | \\[4pt] | ||
+ | ~~p~~~~~ | ||
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)~q)~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | ((p)(q)) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | ((~)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | p ~\text{and}~ q | |
+ | \\[4pt] | ||
+ | p ~\text{equal to}~ q | ||
+ | \\[4pt] | ||
+ | q | ||
+ | \\[4pt] | ||
+ | \text{not}~ p ~\text{without}~ q | ||
+ | \\[4pt] | ||
+ | p | ||
\\[4pt] | \\[4pt] | ||
− | + | \text{not}~ q ~\text{without}~ p | |
\\[4pt] | \\[4pt] | ||
− | + | p ~\text{or}~ q | |
\\[4pt] | \\[4pt] | ||
− | + | \text{true} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | p \land q | |
\\[4pt] | \\[4pt] | ||
− | + | p = q | |
\\[4pt] | \\[4pt] | ||
− | + | q | |
\\[4pt] | \\[4pt] | ||
− | + | p \Rightarrow q | |
+ | \\[4pt] | ||
+ | p | ||
+ | \\[4pt] | ||
+ | p \Leftarrow q | ||
+ | \\[4pt] | ||
+ | p \lor q | ||
+ | \\[4pt] | ||
+ | 1 | ||
\end{matrix}</math> | \end{matrix}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ <math>\text{Table | + | |+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}</math> |
|- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
− | | width=" | + | | width="15%" | |
− | | width=" | + | <p><math>\mathcal{L}_1</math></p> |
− | | width=" | + | <p><math>\text{Decimal}</math></p> |
− | <math>\ | + | | width="15%" | |
− | | width=" | + | <p><math>\mathcal{L}_2</math></p> |
− | <math>\ | + | <p><math>\text{Binary}</math></p> |
− | | width=" | + | | width="15%" | |
− | <math>\ | + | <p><math>\mathcal{L}_3</math></p> |
− | | width=" | + | <p><math>\text{Vector}</math></p> |
− | <math>\ | + | | width="15%" | |
− | |- | + | <p><math>\mathcal{L}_4</math></p> |
− | | <math> | + | <p><math>\text{Cactus}</math></p> |
− | | <math> | + | | width="25%" | |
− | | <math> | + | <p><math>\mathcal{L}_5</math></p> |
− | | <math> | + | <p><math>\text{English}</math></p> |
− | | <math> | + | | width="15%" | |
+ | <p><math>\mathcal{L}_6</math></p> | ||
+ | <p><math>\text{Ordinary}</math></p> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>p\colon\!</math> | ||
+ | | <math>1~1~0~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>q\colon\!</math> | ||
+ | | <math>1~0~1~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | <math>f_0\!</math> | ||
+ | | <math>f_{0000}\!</math> | ||
+ | | <math>0~0~0~0</math> | ||
| <math>(~)</math> | | <math>(~)</math> | ||
+ | | <math>\text{false}\!</math> | ||
+ | | <math>0\!</math> | ||
|- | |- | ||
| | | | ||
Line 2,417: | Line 2,474: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{0001} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{0010} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{0100} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1000} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 0~0~0~1 | |
\\[4pt] | \\[4pt] | ||
− | ~ | + | 0~0~1~0 |
\\[4pt] | \\[4pt] | ||
− | ~ | + | 0~1~0~0 |
\\[4pt] | \\[4pt] | ||
− | + | 1~0~0~0 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p)(q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | (p)~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | ~p~(q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \text{neither}~ p ~\text{nor}~ q | |
\\[4pt] | \\[4pt] | ||
− | + | q ~\text{without}~ p | |
\\[4pt] | \\[4pt] | ||
− | ~ | + | p ~\text{without}~ q |
\\[4pt] | \\[4pt] | ||
− | ~ | + | p ~\text{and}~ q |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \lnot p \land \lnot q | |
\\[4pt] | \\[4pt] | ||
− | + | \lnot p \land q | |
\\[4pt] | \\[4pt] | ||
− | + | p \land \lnot q | |
\\[4pt] | \\[4pt] | ||
− | + | p \land q | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,474: | Line 2,531: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{0011} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1100} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 0~0~1~1 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~1~0~0 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p) |
\\[4pt] | \\[4pt] | ||
− | + | ~p~ | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \text{not}~ p | |
\\[4pt] | \\[4pt] | ||
− | + | p | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \lnot p | |
\\[4pt] | \\[4pt] | ||
− | + | p | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,511: | Line 2,568: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{0110} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1001} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 0~1~1~0 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~0~0~1 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | ((~)) | + | ((p,~q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | p ~\text{not equal to}~ q | |
\\[4pt] | \\[4pt] | ||
− | + | p ~\text{equal to}~ q | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | p \ne q | |
\\[4pt] | \\[4pt] | ||
− | + | p = q | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,548: | Line 2,605: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{0101} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1010} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 0~1~0~1 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~0~1~0 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (q) |
\\[4pt] | \\[4pt] | ||
− | + | ~q~ | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \text{not}~ q | |
\\[4pt] | \\[4pt] | ||
− | + | q | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \lnot q | |
\\[4pt] | \\[4pt] | ||
− | + | q | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,589: | Line 2,646: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{0111} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1011} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1101} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{1110} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 0~1~1~1 | |
\\[4pt] | \\[4pt] | ||
− | ~ | + | 1~0~1~1 |
\\[4pt] | \\[4pt] | ||
− | ~ | + | 1~1~0~1 |
\\[4pt] | \\[4pt] | ||
− | + | 1~1~1~0 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~(p~~q)~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | ~(p~(q)) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ((p)~q)~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | ((p)(q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | \text{not both}~ p ~\text{and}~ q |
\\[4pt] | \\[4pt] | ||
− | ~ | + | \text{not}~ p ~\text{without}~ q |
\\[4pt] | \\[4pt] | ||
− | + | \text{not}~ q ~\text{without}~ p | |
\\[4pt] | \\[4pt] | ||
− | + | p ~\text{or}~ q | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \lnot p \lor \lnot q | |
\\[4pt] | \\[4pt] | ||
− | + | p \Rightarrow q | |
\\[4pt] | \\[4pt] | ||
− | + | p \Leftarrow q | |
\\[4pt] | \\[4pt] | ||
− | + | p \lor q | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
| <math>f_{15}\!</math> | | <math>f_{15}\!</math> | ||
+ | | <math>f_{1111}\!</math> | ||
+ | | <math>1~1~1~1</math> | ||
| <math>((~))</math> | | <math>((~))</math> | ||
− | | <math> | + | | <math>\text{true}\!</math> |
− | | <math> | + | | <math>1\!</math> |
− | |||
− | |||
|} | |} | ||
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ <math>\text{Table | + | |+ <math>\text{Table A3.}~~\operatorname{E}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}p, \operatorname{d}q \}</math> |
|- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
| width="10%" | | | width="10%" | | ||
| width="18%" | <math>f\!</math> | | width="18%" | <math>f\!</math> | ||
− | | width="18%" | <math>\operatorname{E}f|_{ | + | | width="18%" | |
− | | width="18%" | <math>\operatorname{E}f|_{ | + | <p><math>\operatorname{T}_{11} f</math></p> |
− | | width="18%" | <math>\operatorname{E}f|_{( | + | <p><math>\operatorname{E}f|_{\operatorname{d}p~\operatorname{d}q}</math></p> |
− | | width="18%" | <math>\operatorname{E}f|_{( | + | | width="18%" | |
+ | <p><math>\operatorname{T}_{10} f</math></p> | ||
+ | <p><math>\operatorname{E}f|_{\operatorname{d}p(\operatorname{d}q)}</math></p> | ||
+ | | width="18%" | | ||
+ | <p><math>\operatorname{T}_{01} f</math></p> | ||
+ | <p><math>\operatorname{E}f|_{(\operatorname{d}p)\operatorname{d}q}</math></p> | ||
+ | | width="18%" | | ||
+ | <p><math>\operatorname{T}_{00} f</math></p> | ||
+ | <p><math>\operatorname{E}f|_{(\operatorname{d}p)(\operatorname{d}q)}</math></p> | ||
|- | |- | ||
| <math>f_0\!</math> | | <math>f_0\!</math> | ||
Line 2,677: | Line 2,742: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p)(q) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)~q~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~(q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~p~~q~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~(q) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)(q) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~p~(q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)(q) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p)~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)(q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~~q~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~(q) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p)(q) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)~q~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~(q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,734: | Line 2,799: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~p~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~p~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~ |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,771: | Line 2,836: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~( | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p,~q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~( | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p,~q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (( | + | ((p,~q)) |
\\[4pt] | \\[4pt] | ||
− | ~( | + | ~(p,~q)~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (( | + | ((p,~q)) |
\\[4pt] | \\[4pt] | ||
− | ~( | + | ~(p,~q)~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~( | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p,~q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,808: | Line 2,873: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (q) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (q) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,849: | Line 2,914: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (~ | + | (~p~~q~) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | (~p~(q)) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)~q~) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)(q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (( | + | ((p)(q)) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)~q~) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | (~p~(q)) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | (~p~~q~) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (( | + | ((p)~q~) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)(q)) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | (~p~~q~) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | (~p~(q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (~ | + | (~p~(q)) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | (~p~~q~) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)(q)) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)~q~) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (~ | + | (~p~~q~) |
\\[4pt] | \\[4pt] | ||
− | (~ | + | (~p~(q)) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)~q~) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)(q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,904: | Line 2,969: | ||
| <math>((~))</math> | | <math>((~))</math> | ||
| <math>((~))</math> | | <math>((~))</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | colspan="2" | <math>\text{Fixed Point Total}\!</math> | ||
+ | | <math>4\!</math> | ||
+ | | <math>4\!</math> | ||
+ | | <math>4\!</math> | ||
+ | | <math>16\!</math> | ||
|} | |} | ||
<br> | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ <math>\text{Table | + | |+ <math>\text{Table A4.}~~\operatorname{D}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}p, \operatorname{d}q \}</math> |
|- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
| width="10%" | | | width="10%" | | ||
| width="18%" | <math>f\!</math> | | width="18%" | <math>f\!</math> | ||
− | | width="18%" | <math>\operatorname{D}f|_{ | + | | width="18%" | |
− | | width="18%" | <math>\operatorname{D}f|_{ | + | <math>\operatorname{D}f|_{\operatorname{d}p~\operatorname{d}q}</math> |
− | | width="18%" | <math>\operatorname{D}f|_{( | + | | width="18%" | |
− | | width="18%" | <math>\operatorname{D}f|_{( | + | <math>\operatorname{D}f|_{\operatorname{d}p(\operatorname{d}q)}</math> |
+ | | width="18%" | | ||
+ | <math>\operatorname{D}f|_{(\operatorname{d}p)\operatorname{d}q}</math> | ||
+ | | width="18%" | | ||
+ | <math>\operatorname{D}f|_{(\operatorname{d}p)(\operatorname{d}q)}</math> | ||
|- | |- | ||
| <math>f_0\!</math> | | <math>f_0\!</math> | ||
Line 2,937: | Line 3,012: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p)(q) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p)~q~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~(q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ((p,~q)) |
\\[4pt] | \\[4pt] | ||
− | ~~ | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | ~( | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p,~q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | (q) | |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | (p) | |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | (~) |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 2,994: | Line 3,069: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (p) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | ((~)) | |
\\[4pt] | \\[4pt] | ||
− | + | ((~)) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | ((~)) | |
\\[4pt] | \\[4pt] | ||
− | + | ((~)) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | (~) | |
\\[4pt] | \\[4pt] | ||
− | + | (~) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | (~) | |
\\[4pt] | \\[4pt] | ||
− | + | (~) | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 3,031: | Line 3,106: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~( | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p,~q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (~) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | ((~)) |
\\[4pt] | \\[4pt] | ||
− | ( | + | ((~)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | ((~)) |
\\[4pt] | \\[4pt] | ||
− | ( | + | ((~)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (~) |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 3,068: | Line 3,143: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ( | + | (q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~q~ |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | ((~)) | |
\\[4pt] | \\[4pt] | ||
− | + | ((~)) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | (~) | |
\\[4pt] | \\[4pt] | ||
− | + | (~) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | ((~)) | |
\\[4pt] | \\[4pt] | ||
− | + | ((~)) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | (~) | |
\\[4pt] | \\[4pt] | ||
− | + | (~) | |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
Line 3,109: | Line 3,184: | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (~ | + | ~(p~~q)~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | ~(p~(q)) |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)~q)~ |
\\[4pt] | \\[4pt] | ||
− | (( | + | ((p)(q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (( | + | ((p,~q)) |
\\[4pt] | \\[4pt] | ||
− | ~( | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | ~~ | + | ~(p,~q)~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ((p,~q)) |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~q~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (q) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~q~ |
\\[4pt] | \\[4pt] | ||
− | + | (q) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | ~p~ |
\\[4pt] | \\[4pt] | ||
− | ~ | + | ~p~ |
\\[4pt] | \\[4pt] | ||
− | ( | + | (p) |
\\[4pt] | \\[4pt] | ||
− | + | (p) | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | ~ | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ~ | + | (~) |
\\[4pt] | \\[4pt] | ||
− | ( | + | (~) |
\end{matrix}</math> | \end{matrix}</math> | ||
|- | |- | ||
| <math>f_{15}\!</math> | | <math>f_{15}\!</math> | ||
| <math>((~))</math> | | <math>((~))</math> | ||
− | | <math> | + | | <math>(~)</math> |
− | | <math> | + | | <math>(~)</math> |
− | | <math> | + | | <math>(~)</math> |
− | | <math> | + | | <math>(~)</math> |
|} | |} | ||
<br> | <br> | ||
− | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
− | + | |+ <math>\text{Table A5.}~~\operatorname{E}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math> | |
− | + | |- style="background:#f0f0ff" | |
− | + | | width="10%" | | |
− | {| align="center" cellpadding=" | + | | width="18%" | <math>f\!</math> |
− | |- style=" | + | | width="18%" | <math>\operatorname{E}f|_{xy}</math> |
− | | width=" | + | | width="18%" | <math>\operatorname{E}f|_{p(q)}</math> |
− | | width=" | + | | width="18%" | <math>\operatorname{E}f|_{(p)q}</math> |
− | <math>\operatorname{ | + | | width="18%" | <math>\operatorname{E}f|_{(p)(q)}</math> |
− | | width=" | + | |- |
− | <math>\operatorname{ | + | | <math>f_0\!</math> |
− | | width=" | + | | <math>(~)</math> |
− | <math>\operatorname{ | + | | <math>(~)</math> |
− | | width=" | + | | <math>(~)</math> |
− | <math>\operatorname{ | + | | <math>(~)</math> |
− | |- | + | | <math>(~)</math> |
− | + | |- | |
− | | <math> | + | | |
− | | <math> | + | <math>\begin{matrix} |
− | | <math> | + | f_1 |
− | | <math> | + | \\[4pt] |
− | + | f_2 | |
− | + | \\[4pt] | |
− | | <math>\ | + | f_4 |
− | | <math>\ | + | \\[4pt] |
− | | <math>\ | + | f_8 |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (p)(q) | |
− | + | \\[4pt] | |
− | + | (p)~q~ | |
− | + | \\[4pt] | |
− | | | + | ~p~(q) |
− | + | \\[4pt] | |
− | + | ~p~~q~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
− | + | \\[4pt] | |
− | + | ~\operatorname{d}p~(\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p)~\operatorname{d}q~ | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p)(\operatorname{d}q) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~\operatorname{d}p~(\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
− | + | \\[4pt] | |
− | <math>\ | + | (\operatorname{d}p)(\operatorname{d}q) |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p)~\operatorname{d}q~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (\operatorname{d}p)~\operatorname{d}q~ | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p)(\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
− | + | \\[4pt] | |
− | + | ~\operatorname{d}p~(\operatorname{d}q) | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (\operatorname{d}p)(\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p)~\operatorname{d}q~ | |
− | + | \\[4pt] | |
− | + | ~\operatorname{d}p~(\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | ~\operatorname{d}p~~\operatorname{d}q~ | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_3 | |
− | + | \\[4pt] | |
− | + | f_{12} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (p) | |
− | + | \\[4pt] | |
− | | | + | ~p~ |
− | + | \end{matrix}</math> | |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | ~\operatorname{d}p~ | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p) | |
− | + | \end{matrix}</math> | |
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | \ | + | ~\operatorname{d}p~ |
− | \\[ | + | \\[4pt] |
− | \ | + | (\operatorname{d}p) |
− | |||
− | |||
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | \ | + | (\operatorname{d}p) |
− | \\[ | + | \\[4pt] |
− | \ | + | ~\operatorname{d}p~ |
− | |||
− | |||
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | \ | + | (\operatorname{d}p) |
− | \\[ | + | \\[4pt] |
− | \ | + | ~\operatorname{d}p~ |
− | |||
− | |||
\end{matrix}</math> | \end{matrix}</math> | ||
+ | |- | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | \ | + | f_6 |
− | \\[ | + | \\[4pt] |
− | \ | + | f_9 |
− | \\[ | + | \end{matrix}</math> |
− | \ | + | | |
+ | <math>\begin{matrix} | ||
+ | ~(p,~q)~ | ||
+ | \\[4pt] | ||
+ | ((p,~q)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~(\operatorname{d}p,~\operatorname{d}q)~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}p,~\operatorname{d}q)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((\operatorname{d}p,~\operatorname{d}q)) | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}p,~\operatorname{d}q)~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((\operatorname{d}p,~\operatorname{d}q)) | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}p,~\operatorname{d}q)~ | ||
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | \ | + | ~(\operatorname{d}p,~\operatorname{d}q)~ |
− | \\[ | + | \\[4pt] |
− | \ | + | ((\operatorname{d}p,~\operatorname{d}q)) |
− | |||
− | |||
\end{matrix}</math> | \end{matrix}</math> | ||
+ | |- | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_5 | |
− | + | \\[4pt] | |
− | + | f_{10} | |
− | \\[ | ||
− | |||
\end{matrix}</math> | \end{matrix}</math> | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | < | + | (q) |
− | + | \\[4pt] | |
− | + | ~q~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~\operatorname{d}q~ | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}q) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (\operatorname{d}q) | |
− | | | + | \\[4pt] |
− | + | ~\operatorname{d}q~ | |
− | < | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~\operatorname{d}q~ | |
− | < | + | \\[4pt] |
− | + | (\operatorname{d}q) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | ~\operatorname{d}q~ | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | | | + | f_7 |
− | + | \\[4pt] | |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | + | \\[4pt] | |
− | + | f_{14} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (~p~~q~) | |
− | + | \\[4pt] | |
− | + | (~p~(q)) | |
− | + | \\[4pt] | |
− | + | ((p)~q~) | |
− | + | \\[4pt] | |
− | + | ((p)(q)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \\[4pt] | |
− | + | ((\operatorname{d}p)~\operatorname{d}q~) | |
− | + | \\[4pt] | |
− | | | + | (~\operatorname{d}p~(\operatorname{d}q)) |
− | | | + | \\[4pt] |
− | | | + | (~\operatorname{d}p~~\operatorname{d}q~) |
− | | | + | \end{matrix}</math> |
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | ((\operatorname{d}p)~\operatorname{d}q~) | |
− | </ | + | \\[4pt] |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | < | + | \\[4pt] |
− | + | (~\operatorname{d}p~~\operatorname{d}q~) | |
− | + | \\[4pt] | |
− | + | (~\operatorname{d}p~(\operatorname{d}q)) | |
− | < | + | \end{matrix}</math> |
− | + | | | |
+ | <math>\begin{matrix} | ||
+ | (~\operatorname{d}p~(\operatorname{d}q)) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}p~~\operatorname{d}q~) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}p)(\operatorname{d}q)) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}p)~\operatorname{d}q~) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~\operatorname{d}p~~\operatorname{d}q~) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}p~(\operatorname{d}q)) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}p)~\operatorname{d}q~) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}p)(\operatorname{d}q)) | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | <math>f_{15}\!</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
− | + | <br> | |
− | Table | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | + | |+ <math>\text{Table A6.}~~\operatorname{D}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math> | |
− | \ | + | |- style="background:#f0f0ff" |
− | \ | + | | width="10%" | |
− | \ | + | | width="18%" | <math>f\!</math> |
− | + | | width="18%" | <math>\operatorname{D}f|_{xy}</math> | |
− | + | | width="18%" | <math>\operatorname{D}f|_{p(q)}</math> | |
− | + | | width="18%" | <math>\operatorname{D}f|_{(p)q}</math> | |
− | + | | width="18%" | <math>\operatorname{D}f|_{(p)(q)}</math> | |
− | + | |- | |
− | + | | <math>f_0\!</math> | |
− | \ | + | | <math>(~)</math> |
− | + | | <math>(~)</math> | |
− | + | | <math>(~)</math> | |
− | \ | + | | <math>(~)</math> |
− | + | | <math>(~)</math> | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_1 | |
− | + | \\[4pt] | |
− | + | f_2 | |
− | + | \\[4pt] | |
− | + | f_4 | |
− | + | \\[4pt] | |
− | + | f_8 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (p)(q) | |
− | + | \\[4pt] | |
− | + | (p)~q~ | |
− | + | \\[4pt] | |
− | + | ~p~(q) | |
− | + | \\[4pt] | |
− | + | ~p~~q~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
− | + | \\[4pt] | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \\[4pt] | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \\[4pt] | |
− | \ | + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \\[4pt] | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_3 | |
− | + | \\[4pt] | |
− | + | f_{12} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (p) | |
− | + | \\[4pt] | |
− | + | ~p~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}p | |
− | + | \\[4pt] | |
− | + | \operatorname{d}p | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}p | |
− | + | \\[4pt] | |
− | + | \operatorname{d}p | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}p | |
− | + | \\[4pt] | |
− | + | \operatorname{d}p | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}p | |
− | + | \\[4pt] | |
− | \ | + | \operatorname{d}p |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | \ | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_6 | |
− | + | \\[4pt] | |
− | \begin{ | + | f_9 |
− | \ | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~(p,~q)~ | |
− | + | \\[4pt] | |
− | + | ((p,~q)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | \ | + | <math>\begin{matrix} |
− | + | (\operatorname{d}p,~\operatorname{d}q) | |
− | + | \\[4pt] | |
− | \ | + | (\operatorname{d}p,~\operatorname{d}q) |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (\operatorname{d}p,~\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p,~\operatorname{d}q) | |
− | \ | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (\operatorname{d}p,~\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p,~\operatorname{d}q) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (\operatorname{d}p,~\operatorname{d}q) | |
− | + | \\[4pt] | |
− | + | (\operatorname{d}p,~\operatorname{d}q) | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_5 | |
− | + | \\[4pt] | |
− | + | f_{10} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (q) | |
− | + | \\[4pt] | |
− | + | ~q~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}q | |
− | + | \\[4pt] | |
− | + | \operatorname{d}q | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}q | |
− | + | \\[4pt] | |
− | + | \operatorname{d}q | |
− | + | \end{matrix}</math> | |
− | \ | + | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}q | |
− | + | \\[4pt] | |
− | + | \operatorname{d}q | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \operatorname{d}q | |
− | + | \\[4pt] | |
− | + | \operatorname{d}q | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | \ | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_7 | |
− | + | \\[4pt] | |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | + | \\[4pt] | |
− | + | f_{14} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (~p~~q~) | |
− | \ | + | \\[4pt] |
− | + | (~p~(q)) | |
− | + | \\[4pt] | |
− | + | ((p)~q~) | |
− | + | \\[4pt] | |
− | + | ((p)(q)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \\[4pt] | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | \ | + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \\[4pt] | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | \ | + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}p~(\operatorname{d}q)~ | |
− | + | \\[4pt] | |
− | + | ~(\operatorname{d}p)~\operatorname{d}q~~ | |
− | + | \\[4pt] | |
− | + | ((\operatorname{d}p)(\operatorname{d}q)) | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | + | | <math>f_{15}\!</math> | |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | \ | + | | <math>((~))</math> |
− | + | | <math>((~))</math> | |
− | + | |} | |
− | + | ||
− | + | <br> | |
− | + | ||
− | + | ===Wiki TeX Tables : XY=== | |
− | + | ||
− | \ | + | <br> |
− | + | ||
− | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
− | \ | + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> |
− | + | |- style="background:#f0f0ff" | |
− | + | | width="15%" | | |
− | \ | + | <p><math>\mathcal{L}_1</math></p> |
− | + | <p><math>\text{Decimal}</math></p> | |
− | + | | width="15%" | | |
− | + | <p><math>\mathcal{L}_2</math></p> | |
− | + | <p><math>\text{Binary}</math></p> | |
− | \ | + | | width="15%" | |
− | + | <p><math>\mathcal{L}_3</math></p> | |
− | \ | + | <p><math>\text{Vector}</math></p> |
− | + | | width="15%" | | |
− | \ | + | <p><math>\mathcal{L}_4</math></p> |
− | + | <p><math>\text{Cactus}</math></p> | |
− | + | | width="25%" | | |
− | \ | + | <p><math>\mathcal{L}_5</math></p> |
− | + | <p><math>\text{English}</math></p> | |
− | + | | width="15%" | | |
− | \ | + | <p><math>\mathcal{L}_6</math></p> |
− | + | <p><math>\text{Ordinary}</math></p> | |
− | + | |- style="background:#f0f0ff" | |
− | + | | | |
− | + | | align="right" | <math>x\colon\!</math> | |
− | + | | <math>1~1~0~0\!</math> | |
− | + | | | |
− | + | | | |
− | + | | | |
− | + | |- style="background:#f0f0ff" | |
− | + | | | |
− | + | | align="right" | <math>y\colon\!</math> | |
− | + | | <math>1~0~1~0\!</math> | |
− | + | | | |
− | + | | | |
− | + | | | |
− | + | |- | |
− | + | | <math>f_{0}\!</math> | |
− | + | | <math>f_{0000}\!</math> | |
− | + | | <math>0~0~0~0\!</math> | |
− | + | | <math>(~)\!</math> | |
− | + | | <math>\text{false}\!</math> | |
− | + | | <math>0\!</math> | |
− | + | |- | |
− | + | | <math>f_{1}\!</math> | |
− | + | | <math>f_{0001}\!</math> | |
− | + | | <math>0~0~0~1\!</math> | |
− | + | | <math>(x)(y)\!</math> | |
− | + | | <math>\text{neither}~ x ~\text{nor}~ y\!</math> | |
− | + | | <math>\lnot x \land \lnot y\!</math> | |
− | + | |- | |
− | + | | <math>f_{2}\!</math> | |
+ | | <math>f_{0010}\!</math> | ||
+ | | <math>0~0~1~0\!</math> | ||
+ | | <math>(x)~y\!</math> | ||
+ | | <math>y ~\text{without}~ x\!</math> | ||
+ | | <math>\lnot x \land y\!</math> | ||
+ | |- | ||
+ | | <math>f_{3}\!</math> | ||
+ | | <math>f_{0011}\!</math> | ||
+ | | <math>0~0~1~1\!</math> | ||
+ | | <math>(x)\!</math> | ||
+ | | <math>\text{not}~ x\!</math> | ||
+ | | <math>\lnot x\!</math> | ||
+ | |- | ||
+ | | <math>f_{4}\!</math> | ||
+ | | <math>f_{0100}\!</math> | ||
+ | | <math>0~1~0~0\!</math> | ||
+ | | <math>x~(y)\!</math> | ||
+ | | <math>x ~\text{without}~ y\!</math> | ||
+ | | <math>x \land \lnot y\!</math> | ||
+ | |- | ||
+ | | <math>f_{5}\!</math> | ||
+ | | <math>f_{0101}\!</math> | ||
+ | | <math>0~1~0~1\!</math> | ||
+ | | <math>(y)\!</math> | ||
+ | | <math>\text{not}~ y\!</math> | ||
+ | | <math>\lnot y\!</math> | ||
+ | |- | ||
+ | | <math>f_{6}\!</math> | ||
+ | | <math>f_{0110}\!</math> | ||
+ | | <math>0~1~1~0\!</math> | ||
+ | | <math>(x,~y)\!</math> | ||
+ | | <math>x ~\text{not equal to}~ y\!</math> | ||
+ | | <math>x \ne y\!</math> | ||
+ | |- | ||
+ | | <math>f_{7}\!</math> | ||
+ | | <math>f_{0111}\!</math> | ||
+ | | <math>0~1~1~1\!</math> | ||
+ | | <math>(x~y)\!</math> | ||
+ | | <math>\text{not both}~ x ~\text{and}~ y\!</math> | ||
+ | | <math>\lnot x \lor \lnot y\!</math> | ||
+ | |- | ||
+ | | <math>f_{8}\!</math> | ||
+ | | <math>f_{1000}\!</math> | ||
+ | | <math>1~0~0~0\!</math> | ||
+ | | <math>x~y\!</math> | ||
+ | | <math>x ~\text{and}~ y\!</math> | ||
+ | | <math>x \land y\!</math> | ||
+ | |- | ||
+ | | <math>f_{9}\!</math> | ||
+ | | <math>f_{1001}\!</math> | ||
+ | | <math>1~0~0~1\!</math> | ||
+ | | <math>((x,~y))\!</math> | ||
+ | | <math>x ~\text{equal to}~ y\!</math> | ||
+ | | <math>x = y\!</math> | ||
+ | |- | ||
+ | | <math>f_{10}\!</math> | ||
+ | | <math>f_{1010}\!</math> | ||
+ | | <math>1~0~1~0\!</math> | ||
+ | | <math>y\!</math> | ||
+ | | <math>y\!</math> | ||
+ | | <math>y\!</math> | ||
+ | |- | ||
+ | | <math>f_{11}\!</math> | ||
+ | | <math>f_{1011}\!</math> | ||
+ | | <math>1~0~1~1\!</math> | ||
+ | | <math>(x~(y))\!</math> | ||
+ | | <math>\text{not}~ x ~\text{without}~ y\!</math> | ||
+ | | <math>x \Rightarrow y\!</math> | ||
+ | |- | ||
+ | | <math>f_{12}\!</math> | ||
+ | | <math>f_{1100}\!</math> | ||
+ | | <math>1~1~0~0\!</math> | ||
+ | | <math>x\!</math> | ||
+ | | <math>x\!</math> | ||
+ | | <math>x\!</math> | ||
+ | |- | ||
+ | | <math>f_{13}\!</math> | ||
+ | | <math>f_{1101}\!</math> | ||
+ | | <math>1~1~0~1\!</math> | ||
+ | | <math>((x)~y)\!</math> | ||
+ | | <math>\text{not}~ y ~\text{without}~ x\!</math> | ||
+ | | <math>x \Leftarrow y\!</math> | ||
+ | |- | ||
+ | | <math>f_{14}\!</math> | ||
+ | | <math>f_{1110}\!</math> | ||
+ | | <math>1~1~1~0\!</math> | ||
+ | | <math>((x)(y))\!</math> | ||
+ | | <math>x ~\text{or}~ y\!</math> | ||
+ | | <math>x \lor y\!</math> | ||
+ | |- | ||
+ | | <math>f_{15}\!</math> | ||
+ | | <math>f_{1111}\!</math> | ||
+ | | <math>1~1~1~1\!</math> | ||
+ | | <math>((~))\!</math> | ||
+ | | <math>\text{true}\!</math> | ||
+ | | <math>1\!</math> | ||
+ | |} | ||
− | + | <br> | |
− | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
− | \ | + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> |
− | + | |- style="background:#f0f0ff" | |
− | + | | width="15%" | | |
− | + | <p><math>\mathcal{L}_1</math></p> | |
− | + | <p><math>\text{Decimal}</math></p> | |
− | + | | width="15%" | | |
− | + | <p><math>\mathcal{L}_2</math></p> | |
− | \ | + | <p><math>\text{Binary}</math></p> |
− | + | | width="15%" | | |
− | + | <p><math>\mathcal{L}_3</math></p> | |
− | + | <p><math>\text{Vector}</math></p> | |
− | + | | width="15%" | | |
− | + | <p><math>\mathcal{L}_4</math></p> | |
− | + | <p><math>\text{Cactus}</math></p> | |
− | + | | width="25%" | | |
− | + | <p><math>\mathcal{L}_5</math></p> | |
− | + | <p><math>\text{English}</math></p> | |
− | + | | width="15%" | | |
− | + | <p><math>\mathcal{L}_6</math></p> | |
− | + | <p><math>\text{Ordinary}</math></p> | |
− | + | |- style="background:#f0f0ff" | |
− | + | | | |
− | + | | align="right" | <math>x\colon\!</math> | |
− | + | | <math>1~1~0~0\!</math> | |
− | + | | | |
− | + | | | |
− | + | | | |
− | + | |- style="background:#f0f0ff" | |
− | + | | | |
− | + | | align="right" | <math>y\colon\!</math> | |
− | + | | <math>1~0~1~0\!</math> | |
− | + | | | |
− | + | | | |
− | + | | | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_0 | |
− | + | \\[4pt] | |
− | \ | + | f_1 |
− | + | \\[4pt] | |
− | + | f_2 | |
− | + | \\[4pt] | |
− | + | f_3 | |
− | + | \\[4pt] | |
− | + | f_4 | |
− | + | \\[4pt] | |
− | + | f_5 | |
− | + | \\[4pt] | |
− | + | f_6 | |
− | + | \\[4pt] | |
− | + | f_7 | |
− | \ | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_{0000} | |
− | + | \\[4pt] | |
− | + | f_{0001} | |
− | + | \\[4pt] | |
− | + | f_{0010} | |
− | + | \\[4pt] | |
− | + | f_{0011} | |
− | + | \\[4pt] | |
− | + | f_{0100} | |
− | + | \\[4pt] | |
− | \ | + | f_{0101} |
− | + | \\[4pt] | |
− | + | f_{0110} | |
− | + | \\[4pt] | |
− | + | f_{0111} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 0~0~0~0 | |
− | + | \\[4pt] | |
− | + | 0~0~0~1 | |
− | + | \\[4pt] | |
− | + | 0~0~1~0 | |
− | \ | + | \\[4pt] |
− | + | 0~0~1~1 | |
− | + | \\[4pt] | |
− | + | 0~1~0~0 | |
− | + | \\[4pt] | |
− | + | 0~1~0~1 | |
− | + | \\[4pt] | |
− | + | 0~1~1~0 | |
− | + | \\[4pt] | |
− | + | 0~1~1~1 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (~) | |
− | + | \\[4pt] | |
− | + | (x)(y) | |
− | + | \\[4pt] | |
− | + | (x)~y~ | |
− | + | \\[4pt] | |
− | + | (x)~~~ | |
− | + | \\[4pt] | |
− | + | ~x~(y) | |
− | + | \\[4pt] | |
− | + | ~~~(y) | |
− | + | \\[4pt] | |
− | + | (x,~y) | |
− | + | \\[4pt] | |
− | + | (x~~y) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \text{false} | |
− | \ | + | \\[4pt] |
− | + | \text{neither}~ x ~\text{nor}~ y | |
− | + | \\[4pt] | |
− | \ | + | y ~\text{without}~ x |
− | + | \\[4pt] | |
− | \begin{ | + | \text{not}~ x |
− | \ | + | \\[4pt] |
− | + | x ~\text{without}~ y | |
− | + | \\[4pt] | |
− | + | \text{not}~ y | |
− | + | \\[4pt] | |
− | + | x ~\text{not equal to}~ y | |
− | + | \\[4pt] | |
− | \ | + | \text{not both}~ x ~\text{and}~ y |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 0 | |
− | + | \\[4pt] | |
− | + | \lnot x \land \lnot y | |
− | \ | + | \\[4pt] |
− | + | \lnot x \land y | |
− | + | \\[4pt] | |
− | + | \lnot x | |
− | + | \\[4pt] | |
− | + | x \land \lnot y | |
− | + | \\[4pt] | |
− | + | \lnot y | |
− | + | \\[4pt] | |
− | + | x \ne y | |
− | + | \\[4pt] | |
− | + | \lnot x \lor \lnot y | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_8 | |
− | + | \\[4pt] | |
− | + | f_9 | |
− | + | \\[4pt] | |
− | + | f_{10} | |
− | + | \\[4pt] | |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{12} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | + | \\[4pt] | |
− | + | f_{14} | |
− | + | \\[4pt] | |
− | + | f_{15} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_{1000} | |
− | + | \\[4pt] | |
− | + | f_{1001} | |
− | + | \\[4pt] | |
− | + | f_{1010} | |
− | + | \\[4pt] | |
− | + | f_{1011} | |
− | + | \\[4pt] | |
− | + | f_{1100} | |
− | + | \\[4pt] | |
− | + | f_{1101} | |
− | + | \\[4pt] | |
− | + | f_{1110} | |
− | + | \\[4pt] | |
− | + | f_{1111} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 1~0~0~0 | |
− | + | \\[4pt] | |
− | + | 1~0~0~1 | |
− | + | \\[4pt] | |
− | + | 1~0~1~0 | |
− | + | \\[4pt] | |
− | + | 1~0~1~1 | |
− | + | \\[4pt] | |
− | + | 1~1~0~0 | |
− | + | \\[4pt] | |
− | + | 1~1~0~1 | |
− | + | \\[4pt] | |
− | + | 1~1~1~0 | |
− | + | \\[4pt] | |
− | + | 1~1~1~1 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~~x~~y~~ | |
− | + | \\[4pt] | |
− | + | ((x,~y)) | |
− | + | \\[4pt] | |
− | + | ~~~~~y~~ | |
− | + | \\[4pt] | |
− | + | ~(x~(y)) | |
− | + | \\[4pt] | |
− | + | ~~x~~~~~ | |
− | + | \\[4pt] | |
− | + | ((x)~y)~ | |
− | + | \\[4pt] | |
− | + | ((x)(y)) | |
− | + | \\[4pt] | |
− | + | ((~)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | x ~\text{and}~ y | |
− | + | \\[4pt] | |
− | + | x ~\text{equal to}~ y | |
− | + | \\[4pt] | |
− | + | y | |
− | + | \\[4pt] | |
− | + | \text{not}~ x ~\text{without}~ y | |
− | + | \\[4pt] | |
− | + | x | |
− | + | \\[4pt] | |
− | + | \text{not}~ y ~\text{without}~ x | |
− | + | \\[4pt] | |
− | + | x ~\text{or}~ y | |
− | + | \\[4pt] | |
− | + | \text{true} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | x \land y | |
− | + | \\[4pt] | |
− | + | x = y | |
− | + | \\[4pt] | |
− | + | y | |
− | + | \\[4pt] | |
− | + | x \Rightarrow y | |
− | + | \\[4pt] | |
− | + | x | |
− | + | \\[4pt] | |
− | + | x \Leftarrow y | |
− | + | \\[4pt] | |
− | < | + | x \lor y |
+ | \\[4pt] | ||
+ | 1 | ||
+ | \end{matrix}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ Table | + | |+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}</math> |
− | |- style="background: | + | |- style="background:#f0f0ff" |
− | + | | width="15%" | | |
− | + | <p><math>\mathcal{L}_1</math></p> | |
− | + | <p><math>\text{Decimal}</math></p> | |
− | |- | + | | width="15%" | |
− | | | + | <p><math>\mathcal{L}_2</math></p> |
− | | | + | <p><math>\text{Binary}</math></p> |
− | | | + | | width="15%" | |
+ | <p><math>\mathcal{L}_3</math></p> | ||
+ | <p><math>\text{Vector}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_4</math></p> | ||
+ | <p><math>\text{Cactus}</math></p> | ||
+ | | width="25%" | | ||
+ | <p><math>\mathcal{L}_5</math></p> | ||
+ | <p><math>\text{English}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_6</math></p> | ||
+ | <p><math>\text{Ordinary}</math></p> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>x\colon\!</math> | ||
+ | | <math>1~1~0~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>y\colon\!</math> | ||
+ | | <math>1~0~1~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
|- | |- | ||
− | | | + | | <math>f_0\!</math> |
+ | | <math>f_{0000}\!</math> | ||
+ | | <math>0~0~0~0</math> | ||
+ | | <math>(~)</math> | ||
+ | | <math>\text{false}\!</math> | ||
+ | | <math>0\!</math> | ||
|- | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | {| | + | <math>\begin{matrix} |
− | | | + | f_1 |
− | + | \\[4pt] | |
− | + | f_2 | |
− | + | \\[4pt] | |
+ | f_4 | ||
+ | \\[4pt] | ||
+ | f_8 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | f_{0001} | ||
+ | \\[4pt] | ||
+ | f_{0010} | ||
+ | \\[4pt] | ||
+ | f_{0100} | ||
+ | \\[4pt] | ||
+ | f_{1000} | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | 0~0~0~1 | ||
+ | \\[4pt] | ||
+ | 0~0~1~0 | ||
+ | \\[4pt] | ||
+ | 0~1~0~0 | ||
+ | \\[4pt] | ||
+ | 1~0~0~0 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (x)(y) | ||
+ | \\[4pt] | ||
+ | (x)~y~ | ||
+ | \\[4pt] | ||
+ | ~x~(y) | ||
+ | \\[4pt] | ||
+ | ~x~~y~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \text{neither}~ x ~\text{nor}~ y | ||
+ | \\[4pt] | ||
+ | y ~\text{without}~ x | ||
+ | \\[4pt] | ||
+ | x ~\text{without}~ y | ||
+ | \\[4pt] | ||
+ | x ~\text{and}~ y | ||
+ | \end{matrix}</math> | ||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | \lnot x \land \lnot y | |
− | + | \\[4pt] | |
− | + | \lnot x \land y | |
− | + | \\[4pt] | |
− | + | x \land \lnot y | |
− | + | \\[4pt] | |
− | + | x \land y | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | f_3 | |
− | + | \\[4pt] | |
− | + | f_{12} | |
− | + | \end{matrix}</math> | |
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | f_{0011} | |
− | + | \\[4pt] | |
− | + | f_{1100} | |
− | + | \end{matrix}</math> | |
− | | | + | | |
− | < | + | <math>\begin{matrix} |
− | + | 0~0~1~1 | |
− | + | \\[4pt] | |
− | + | 1~1~0~0 | |
− | < | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (x) | |
− | + | \\[4pt] | |
− | + | ~x~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \text{not}~ x | |
− | </ | + | \\[4pt] |
− | + | x | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | < | + | <math>\begin{matrix} |
− | + | \lnot x | |
− | + | \\[4pt] | |
− | + | x | |
− | + | \end{matrix}</math> | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_6 | |
− | + | \\[4pt] | |
− | + | f_9 | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | f_{0110} | |
− | < | + | \\[4pt] |
− | + | f_{1001} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | < | + | <math>\begin{matrix} |
− | + | 0~1~1~0 | |
− | + | \\[4pt] | |
− | + | 1~0~0~1 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~(x,~y)~ | |
− | + | \\[4pt] | |
− | + | ((x,~y)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | </ | + | x ~\text{not equal to}~ y |
− | + | \\[4pt] | |
− | + | x ~\text{equal to}~ y | |
− | + | \end{matrix}</math> | |
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | { | ||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | x \ne y | |
+ | \\[4pt] | ||
+ | x = y | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | f_5 | |
− | + | \\[4pt] | |
− | + | f_{10} | |
− | + | \end{matrix}</math> | |
| | | | ||
− | {| | + | <math>\begin{matrix} |
− | | | + | f_{0101} |
− | + | \\[4pt] | |
− | + | f_{1010} | |
− | + | \end{matrix}</math> | |
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | 0~1~0~1 | ||
+ | \\[4pt] | ||
+ | 1~0~1~0 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (y) | ||
+ | \\[4pt] | ||
+ | ~y~ | ||
+ | \end{matrix}</math> | ||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | \text{not}~ y | |
− | + | \\[4pt] | |
− | + | y | |
− | + | \end{matrix}</math> | |
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | \lnot y | |
− | + | \\[4pt] | |
− | + | y | |
− | + | \end{matrix}</math> | |
|- | |- | ||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | f_7 | |
− | + | \\[4pt] | |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | + | \\[4pt] | |
− | + | f_{14} | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | f_{0111} | |
− | + | \\[4pt] | |
− | + | f_{1011} | |
− | + | \\[4pt] | |
− | + | f_{1101} | |
− | + | \\[4pt] | |
− | + | f_{1110} | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | 0~1~1~1 | |
− | + | \\[4pt] | |
− | + | 1~0~1~1 | |
− | + | \\[4pt] | |
− | + | 1~1~0~1 | |
− | | | + | \\[4pt] |
− | + | 1~1~1~0 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~(x~~y)~ | |
− | + | \\[4pt] | |
− | + | ~(x~(y)) | |
− | + | \\[4pt] | |
− | + | ((x)~y)~ | |
− | + | \\[4pt] | |
+ | ((x)(y)) | ||
+ | \end{matrix}</math> | ||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | \text{not both}~ x ~\text{and}~ y | |
− | + | \\[4pt] | |
− | + | \text{not}~ x ~\text{without}~ y | |
− | + | \\[4pt] | |
− | + | \text{not}~ y ~\text{without}~ x | |
− | + | \\[4pt] | |
− | + | x ~\text{or}~ y | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | \lnot x \lor \lnot y | |
+ | \\[4pt] | ||
+ | x \Rightarrow y | ||
+ | \\[4pt] | ||
+ | x \Leftarrow y | ||
+ | \\[4pt] | ||
+ | x \lor y | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | f< | + | | <math>f_{15}\!</math> |
+ | | <math>f_{1111}\!</math> | ||
+ | | <math>1~1~1~1</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>\text{true}\!</math> | ||
+ | | <math>1\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ <math>\text{Table A3.}~~\operatorname{E}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}x, \operatorname{d}y \}</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | width="10%" | | ||
+ | | width="18%" | <math>f\!</math> | ||
+ | | width="18%" | | ||
+ | <p><math>\operatorname{T}_{11} f</math></p> | ||
+ | <p><math>\operatorname{E}f|_{\operatorname{d}x~\operatorname{d}y}</math></p> | ||
+ | | width="18%" | | ||
+ | <p><math>\operatorname{T}_{10} f</math></p> | ||
+ | <p><math>\operatorname{E}f|_{\operatorname{d}x(\operatorname{d}y)}</math></p> | ||
+ | | width="18%" | | ||
+ | <p><math>\operatorname{T}_{01} f</math></p> | ||
+ | <p><math>\operatorname{E}f|_{(\operatorname{d}x)\operatorname{d}y}</math></p> | ||
+ | | width="18%" | | ||
+ | <p><math>\operatorname{T}_{00} f</math></p> | ||
+ | <p><math>\operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)}</math></p> | ||
|- | |- | ||
− | | | + | | <math>f_0\!</math> |
− | | | + | | <math>(~)</math> |
− | + | | <math>(~)</math> | |
− | | | + | | <math>(~)</math> |
− | + | | <math>(~)</math> | |
− | | | + | | <math>(~)</math> |
− | |||
− | | | ||
− | |||
− | | | ||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | f_1 | |
− | + | \\[4pt] | |
− | + | f_2 | |
− | + | \\[4pt] | |
− | + | f_4 | |
− | | | + | \\[4pt] |
− | + | f_8 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (x)(y) | |
− | + | \\[4pt] | |
− | + | (x)~y~ | |
− | + | \\[4pt] | |
− | + | ~x~(y) | |
− | + | \\[4pt] | |
+ | ~x~~y~ | ||
+ | \end{matrix}</math> | ||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | ~x~~y~ | |
− | + | \\[4pt] | |
− | + | ~x~(y) | |
− | + | \\[4pt] | |
− | + | (x)~y~ | |
− | + | \\[4pt] | |
− | | | + | (x)(y) |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~x~(y) | |
− | + | \\[4pt] | |
− | + | ~x~~y~ | |
− | + | \\[4pt] | |
− | + | (x)(y) | |
− | + | \\[4pt] | |
+ | (x)~y~ | ||
+ | \end{matrix}</math> | ||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | (x)~y~ | |
− | + | \\[4pt] | |
− | + | (x)(y) | |
− | + | \\[4pt] | |
− | + | ~x~~y~ | |
− | + | \\[4pt] | |
− | + | ~x~(y) | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | (x)(y) | |
− | + | \\[4pt] | |
− | + | (x)~y~ | |
− | + | \\[4pt] | |
− | + | ~x~(y) | |
− | + | \\[4pt] | |
− | + | ~x~~y~ | |
− | + | \end{matrix}</math> | |
− | |||
|- | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | f_3 | |
− | + | \\[4pt] | |
− | + | f_{12} | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | (x) | |
− | + | \\[4pt] | |
− | + | ~x~ | |
− | + | \end{matrix}</math> | |
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | ~x~ | |
− | + | \\[4pt] | |
− | + | (x) | |
− | + | \end{matrix}</math> | |
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | ~x~ | |
− | + | \\[4pt] | |
− | + | (x) | |
− | + | \end{matrix}</math> | |
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | (x) | |
− | + | \\[4pt] | |
− | + | ~x~ | |
− | + | \end{matrix}</math> | |
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | (x) | |
− | + | \\[4pt] | |
− | + | ~x~ | |
− | + | \end{matrix}</math> | |
|- | |- | ||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | f_6 | |
− | + | \\[4pt] | |
− | + | f_9 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | ~(x,~y)~ | |
− | + | \\[4pt] | |
− | + | ((x,~y)) | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | ~(x,~y)~ | |
− | + | \\[4pt] | |
− | + | ((x,~y)) | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | ((x,~y)) | |
− | + | \\[4pt] | |
− | + | ~(x,~y)~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | | | + | ((x,~y)) |
− | + | \\[4pt] | |
− | + | ~(x,~y)~ | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | ~(x,~y)~ | |
− | + | \\[4pt] | |
− | + | ((x,~y)) | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | f_5 | |
− | + | \\[4pt] | |
− | + | f_{10} | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (y) | |
− | + | \\[4pt] | |
− | + | ~y~ | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~y~ | |
− | + | \\[4pt] | |
− | + | (y) | |
− | + | \end{matrix}</math> | |
− | |||
| | | | ||
− | + | <math>\begin{matrix} | |
− | + | (y) | |
− | + | \\[4pt] | |
− | + | ~y~ | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | ~y~ | |
− | + | \\[4pt] | |
− | + | (y) | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | (y) | |
− | + | \\[4pt] | |
− | + | ~y~ | |
− | + | \end{matrix}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | |||
− | |||
| | | | ||
− | { | + | <math>\begin{matrix} |
− | + | f_7 | |
− | + | \\[4pt] | |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | | | + | \\[4pt] |
− | + | f_{14} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (~x~~y~) | |
− | + | \\[4pt] | |
− | + | (~x~(y)) | |
− | + | \\[4pt] | |
− | + | ((x)~y~) | |
− | + | \\[4pt] | |
+ | ((x)(y)) | ||
+ | \end{matrix}</math> | ||
| | | | ||
− | {| | + | <math>\begin{matrix} |
− | | | + | ((x)(y)) |
− | | | + | \\[4pt] |
− | + | ((x)~y~) | |
− | |- | + | \\[4pt] |
− | | | + | (~x~(y)) |
− | | | + | \\[4pt] |
− | | | + | (~x~~y~) |
− | | | + | \end{matrix}</math> |
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | + | ((x)~y~) | |
− | |- | + | \\[4pt] |
− | | | + | ((x)(y)) |
− | | | + | \\[4pt] |
− | | | + | (~x~~y~) |
− | | | + | \\[4pt] |
− | | | + | (~x~(y)) |
− | < | + | \end{matrix}</math> |
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~x~(y)) | ||
+ | \\[4pt] | ||
+ | (~x~~y~) | ||
+ | \\[4pt] | ||
+ | ((x)(y)) | ||
+ | \\[4pt] | ||
+ | ((x)~y~) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~x~~y~) | ||
+ | \\[4pt] | ||
+ | (~x~(y)) | ||
+ | \\[4pt] | ||
+ | ((x)~y~) | ||
+ | \\[4pt] | ||
+ | ((x)(y)) | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | <math>f_{15}\!</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>((~))</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | colspan="2" | <math>\text{Fixed Point Total}\!</math> | ||
+ | | <math>4\!</math> | ||
+ | | <math>4\!</math> | ||
+ | | <math>4\!</math> | ||
+ | | <math>16\!</math> | ||
+ | |} | ||
− | + | <br> | |
− | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ | + | |+ <math>\text{Table A4.}~~\operatorname{D}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}x, \operatorname{d}y \}</math> |
− | |- style="background: | + | |- style="background:#f0f0ff" |
− | | | + | | width="10%" | |
− | | | + | | width="18%" | <math>f\!</math> |
− | | | + | | width="18%" | |
− | | | + | <math>\operatorname{D}f|_{\operatorname{d}x~\operatorname{d}y}</math> |
− | | | + | | width="18%" | |
− | | | + | <math>\operatorname{D}f|_{\operatorname{d}x(\operatorname{d}y)}</math> |
+ | | width="18%" | | ||
+ | <math>\operatorname{D}f|_{(\operatorname{d}x)\operatorname{d}y}</math> | ||
+ | | width="18%" | | ||
+ | <math>\operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)}</math> | ||
|- | |- | ||
− | | | + | | <math>f_0\!</math> |
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
|- | |- | ||
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | + | f_1 | |
− | | | + | \\[4pt] |
− | + | f_2 | |
− | | | + | \\[4pt] |
− | < | + | f_4 |
− | + | \\[4pt] | |
− | + | f_8 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | | | + | (x)(y) |
− | + | \\[4pt] | |
+ | (x)~y~ | ||
+ | \\[4pt] | ||
+ | ~x~(y) | ||
+ | \\[4pt] | ||
+ | ~x~~y~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((x,~y)) | ||
+ | \\[4pt] | ||
+ | ~(x,~y)~ | ||
+ | \\[4pt] | ||
+ | ~(x,~y)~ | ||
+ | \\[4pt] | ||
+ | ((x,~y)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (y) | ||
+ | \\[4pt] | ||
+ | ~y~ | ||
+ | \\[4pt] | ||
+ | (y) | ||
+ | \\[4pt] | ||
+ | ~y~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (x) | ||
+ | \\[4pt] | ||
+ | (x) | ||
+ | \\[4pt] | ||
+ | ~x~ | ||
+ | \\[4pt] | ||
+ | ~x~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | + | f_3 | |
+ | \\[4pt] | ||
+ | f_{12} | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (x) | ||
+ | \\[4pt] | ||
+ | ~x~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((~)) | ||
+ | \\[4pt] | ||
+ | ((~)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((~)) | ||
+ | \\[4pt] | ||
+ | ((~)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | + | f_6 | |
− | | | + | \\[4pt] |
− | + | f_9 | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | ~(x,~y)~ | |
− | | | + | \\[4pt] |
− | + | ((x,~y)) | |
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((~)) | ||
+ | \\[4pt] | ||
+ | ((~)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((~)) | ||
+ | \\[4pt] | ||
+ | ((~)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_5 | |
− | | | + | \\[4pt] |
− | + | f_{10} | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | (y) | |
− | + | \\[4pt] | |
− | + | ~y~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | < | + | ((~)) |
− | + | \\[4pt] | |
− | { | + | ((~)) |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (~) | |
− | | | + | \\[4pt] |
− | + | (~) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ((~)) | |
+ | \\[4pt] | ||
+ | ((~)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_7 | |
− | + | \\[4pt] | |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | + | \\[4pt] | |
− | + | f_{14} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~(x~~y)~ | |
− | + | \\[4pt] | |
− | + | ~(x~(y)) | |
− | + | \\[4pt] | |
− | + | ((x)~y)~ | |
− | + | \\[4pt] | |
− | + | ((x)(y)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ((x,~y)) | |
− | + | \\[4pt] | |
− | | | + | ~(x,~y)~ |
− | + | \\[4pt] | |
− | + | ~(x,~y)~ | |
− | + | \\[4pt] | |
− | + | ((x,~y)) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~y~ | |
− | + | \\[4pt] | |
+ | (y) | ||
+ | \\[4pt] | ||
+ | ~y~ | ||
+ | \\[4pt] | ||
+ | (y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~x~ | ||
+ | \\[4pt] | ||
+ | ~x~ | ||
+ | \\[4pt] | ||
+ | (x) | ||
+ | \\[4pt] | ||
+ | (x) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (~) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | <math>f_{15}\!</math> |
− | | | + | | <math>((~))</math> |
− | | | + | | <math>(~)</math> |
− | | | + | | <math>(~)</math> |
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ <math>\text{Table A5.}~~\operatorname{E}f ~\text{Expanded Over Ordinary Features}~ \{ x, y \}</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | width="10%" | | ||
+ | | width="18%" | <math>f\!</math> | ||
+ | | width="18%" | <math>\operatorname{E}f|_{xy}</math> | ||
+ | | width="18%" | <math>\operatorname{E}f|_{x(y)}</math> | ||
+ | | width="18%" | <math>\operatorname{E}f|_{(x)y}</math> | ||
+ | | width="18%" | <math>\operatorname{E}f|_{(x)(y)}</math> | ||
|- | |- | ||
− | | | + | | <math>f_0\!</math> |
− | | | + | | <math>(~)</math> |
− | | | + | | <math>(~)</math> |
− | | | + | | <math>(~)</math> |
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_1 | |
− | + | \\[4pt] | |
− | + | f_2 | |
− | + | \\[4pt] | |
− | + | f_4 | |
− | + | \\[4pt] | |
− | + | f_8 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (x)(y) | |
− | + | \\[4pt] | |
− | | | + | (x)~y~ |
− | + | \\[4pt] | |
− | + | ~x~(y) | |
− | + | \\[4pt] | |
− | + | ~x~~y~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~\operatorname{d}x~~\operatorname{d}y~ | |
− | + | \\[4pt] | |
+ | ~\operatorname{d}x~(\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x)~\operatorname{d}y~ | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x)(\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~\operatorname{d}x~(\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}x~~\operatorname{d}y~ | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x)(\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x)~\operatorname{d}y~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x)~\operatorname{d}y~ | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x)(\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}x~~\operatorname{d}y~ | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}x~(\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x)(\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x)~\operatorname{d}y~ | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}x~(\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}x~~\operatorname{d}y~ | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_3 | |
− | + | \\[4pt] | |
− | | | + | f_{12} |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (x) | |
− | + | \\[4pt] | |
− | < | + | ~x~ |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | | | + | ~\operatorname{d}x~ |
− | + | \\[4pt] | |
− | + | (\operatorname{d}x) | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~\operatorname{d}x~ | |
+ | \\[4pt] | ||
+ | (\operatorname{d}x) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x) | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}x~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x) | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}x~ | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | + | f_6 | |
+ | \\[4pt] | ||
+ | f_9 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~(x,~y)~ | ||
+ | \\[4pt] | ||
+ | ((x,~y)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~(\operatorname{d}x,~\operatorname{d}y)~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x,~\operatorname{d}y)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((\operatorname{d}x,~\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}x,~\operatorname{d}y)~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((\operatorname{d}x,~\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}x,~\operatorname{d}y)~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~(\operatorname{d}x,~\operatorname{d}y)~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x,~\operatorname{d}y)) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_5 | |
− | | | + | \\[4pt] |
− | + | f_{10} | |
− | + | \end{matrix}</math> | |
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | (y) | |
− | + | \\[4pt] | |
− | + | ~y~ | |
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~\operatorname{d}y~ | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}y~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~\operatorname{d}y~ | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | ~\operatorname{d}y~ | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_7 | |
− | | | + | \\[4pt] |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | + | \\[4pt] | |
− | + | f_{14} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | (~x~~y~) | |
− | + | \\[4pt] | |
− | + | (~x~(y)) | |
+ | \\[4pt] | ||
+ | ((x)~y~) | ||
+ | \\[4pt] | ||
+ | ((x)(y)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)~\operatorname{d}y~) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}x~(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}x~~\operatorname{d}y~) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((\operatorname{d}x)~\operatorname{d}y~) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}x~~\operatorname{d}y~) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}x~(\operatorname{d}y)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~\operatorname{d}x~(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}x~~\operatorname{d}y~) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)~\operatorname{d}y~) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~\operatorname{d}x~~\operatorname{d}y~) | ||
+ | \\[4pt] | ||
+ | (~\operatorname{d}x~(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)~\operatorname{d}y~) | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | <math>f_{15}\!</math> |
− | + | | <math>((~))</math> | |
− | | | + | | <math>((~))</math> |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
<br> | <br> | ||
− | {| align="center" border="1" cellpadding=" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ | + | |+ <math>\text{Table A6.}~~\operatorname{D}f ~\text{Expanded Over Ordinary Features}~ \{ x, y \}</math> |
− | |- style="background: | + | |- style="background:#f0f0ff" |
− | | | + | | width="10%" | |
− | | | + | | width="18%" | <math>f\!</math> |
− | | | + | | width="18%" | <math>\operatorname{D}f|_{xy}</math> |
− | | | + | | width="18%" | <math>\operatorname{D}f|_{x(y)}</math> |
− | | | + | | width="18%" | <math>\operatorname{D}f|_{(x)y}</math> |
− | | | + | | width="18%" | <math>\operatorname{D}f|_{(x)(y)}</math> |
|- | |- | ||
− | | | + | | <math>f_0\!</math> |
− | | | + | | <math>(~)</math> |
− | | | + | | <math>(~)</math> |
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
+ | | <math>(~)</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_1 | |
− | + | \\[4pt] | |
− | + | f_2 | |
− | + | \\[4pt] | |
− | + | f_4 | |
− | | | + | \\[4pt] |
− | + | f_8 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | (x)(y) | |
− | + | \\[4pt] | |
− | + | (x)~y~ | |
− | + | \\[4pt] | |
− | + | ~x~(y) | |
− | + | \\[4pt] | |
− | + | ~x~~y~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~~\operatorname{d}x~~\operatorname{d}y~~ | |
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | + | f_3 | |
− | | | + | \\[4pt] |
− | + | f_{12} | |
− | + | \end{matrix}</math> | |
− | + | | | |
+ | <math>\begin{matrix} | ||
+ | (x) | ||
+ | \\[4pt] | ||
+ | ~x~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{d}x | ||
+ | \\[4pt] | ||
+ | \operatorname{d}x | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{d}x | ||
+ | \\[4pt] | ||
+ | \operatorname{d}x | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{d}x | ||
+ | \\[4pt] | ||
+ | \operatorname{d}x | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{d}x | ||
+ | \\[4pt] | ||
+ | \operatorname{d}x | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | | | + | f_6 |
− | + | \\[4pt] | |
− | + | f_9 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | ~(x,~y)~ | |
− | + | \\[4pt] | |
− | + | ((x,~y)) | |
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \\[4pt] | ||
+ | (\operatorname{d}x,~\operatorname{d}y) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | + | f_5 | |
− | | | + | \\[4pt] |
− | + | f_{10} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | (y) | |
− | + | \\[4pt] | |
− | + | ~y~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | | | + | <math>\begin{matrix} |
− | + | \operatorname{d}y | |
− | + | \\[4pt] | |
− | + | \operatorname{d}y | |
− | + | \end{matrix}</math> | |
− | { | + | | |
− | | | + | <math>\begin{matrix} |
− | + | \operatorname{d}y | |
− | + | \\[4pt] | |
− | + | \operatorname{d}y | |
− | + | \end{matrix}</math> | |
− | + | | | |
+ | <math>\begin{matrix} | ||
+ | \operatorname{d}y | ||
+ | \\[4pt] | ||
+ | \operatorname{d}y | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \operatorname{d}y | ||
+ | \\[4pt] | ||
+ | \operatorname{d}y | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | + | f_7 | |
− | + | \\[4pt] | |
− | + | f_{11} | |
− | + | \\[4pt] | |
− | + | f_{13} | |
− | + | \\[4pt] | |
− | + | f_{14} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | | | + | (~x~~y~) |
− | + | \\[4pt] | |
− | + | (~x~(y)) | |
− | + | \\[4pt] | |
− | + | ((x)~y~) | |
− | + | \\[4pt] | |
− | < | + | ((x)(y)) |
− | + | \end{matrix}</math> | |
− | { | + | | |
− | + | <math>\begin{matrix} | |
− | + | ((\operatorname{d}x)(\operatorname{d}y)) | |
− | + | \\[4pt] | |
− | + | ~(\operatorname{d}x)~\operatorname{d}y~~ | |
− | + | \\[4pt] | |
− | | | + | ~~\operatorname{d}x~(\operatorname{d}y)~ |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}x~~\operatorname{d}y~~ | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | ~(\operatorname{d}x)~\operatorname{d}y~~ | |
− | | | + | \\[4pt] |
− | + | ((\operatorname{d}x)(\operatorname{d}y)) | |
− | + | \\[4pt] | |
− | + | ~~\operatorname{d}x~~\operatorname{d}y~~ | |
− | + | \\[4pt] | |
+ | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~~\operatorname{d}x~~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ~~\operatorname{d}x~(\operatorname{d}y)~ | ||
+ | \\[4pt] | ||
+ | ~(\operatorname{d}x)~\operatorname{d}y~~ | ||
+ | \\[4pt] | ||
+ | ((\operatorname{d}x)(\operatorname{d}y)) | ||
+ | \end{matrix}</math> | ||
|- | |- | ||
− | | | + | | <math>f_{15}\!</math> |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | + | | <math>((~))</math> | |
− | | | + | |} |
− | + | ||
− | + | <br> | |
− | + | ||
− | + | ===Klein Four-Group V<sub>4</sub>=== | |
− | | | + | |
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<br> | <br> | ||
− | {| align="center | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | | | + | |- style="height:50px" |
− | | | + | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> |
− | | | + | | width="22%" style="border-bottom:1px solid black" | |
− | + | <math>\operatorname{T}_{00}</math> | |
− | | | + | | width="22%" style="border-bottom:1px solid black" | |
− | | | + | <math>\operatorname{T}_{01}</math> |
− | | | + | | width="22%" style="border-bottom:1px solid black" | |
− | | | + | <math>\operatorname{T}_{10}</math> |
− | | | + | | width="22%" style="border-bottom:1px solid black" | |
− | | | + | <math>\operatorname{T}_{11}</math> |
− | | | + | |- style="height:50px" |
− | |- style=" | + | | style="border-right:1px solid black" | <math>\operatorname{T}_{00}</math> |
− | | | + | | <math>\operatorname{T}_{00}</math> |
− | | | + | | <math>\operatorname{T}_{01}</math> |
− | | | + | | <math>\operatorname{T}_{10}</math> |
− | | | + | | <math>\operatorname{T}_{11}</math> |
− | | | + | |- style="height:50px" |
− | | | + | | style="border-right:1px solid black" | <math>\operatorname{T}_{01}</math> |
− | | | + | | <math>\operatorname{T}_{01}</math> |
− | | | + | | <math>\operatorname{T}_{00}</math> |
− | | | + | | <math>\operatorname{T}_{11}</math> |
− | |- | + | | <math>\operatorname{T}_{10}</math> |
− | | | + | |- style="height:50px" |
− | | | + | | style="border-right:1px solid black" | <math>\operatorname{T}_{10}</math> |
− | | | + | | <math>\operatorname{T}_{10}</math> |
− | | | + | | <math>\operatorname{T}_{11}</math> |
− | + | | <math>\operatorname{T}_{00}</math> | |
+ | | <math>\operatorname{T}_{01}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{T}_{11}</math> | ||
+ | | <math>\operatorname{T}_{11}</math> | ||
+ | | <math>\operatorname{T}_{10}</math> | ||
+ | | <math>\operatorname{T}_{01}</math> | ||
+ | | <math>\operatorname{T}_{00}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |- style="height:50px" | ||
+ | | width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | ||
+ | | width="22%" style="border-bottom:1px solid black" | | ||
+ | <math>\operatorname{e}</math> | ||
+ | | width="22%" style="border-bottom:1px solid black" | | ||
+ | <math>\operatorname{f}</math> | ||
+ | | width="22%" style="border-bottom:1px solid black" | | ||
+ | <math>\operatorname{g}</math> | ||
+ | | width="22%" style="border-bottom:1px solid black" | | ||
+ | <math>\operatorname{h}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ===Symmetric Group S<sub>3</sub>=== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | width="16%" | <math>\operatorname{e}</math> | ||
+ | | width="16%" | <math>\operatorname{f}</math> | ||
+ | | width="16%" | <math>\operatorname{g}</math> | ||
+ | | width="16%" | <math>\operatorname{h}</math> | ||
+ | | width="16%" | <math>\operatorname{i}</math> | ||
+ | | width="16%" | <math>\operatorname{j}</math> | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{matrix} | |
− | | | + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
− | + | \\[3pt] | |
− | | | + | \downarrow & \downarrow & \downarrow |
− | + | \\[6pt] | |
− | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
− | + | \\[3pt] | |
− | + | \downarrow & \downarrow & \downarrow | |
− | | | + | \\[6pt] |
− | + | \mathrm{C} & \mathrm{A} & \mathrm{B} | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
− | + | \\[3pt] | |
− | + | \downarrow & \downarrow & \downarrow | |
− | + | \\[6pt] | |
− | + | \mathrm{B} & \mathrm{C} & \mathrm{A} | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
− | + | \\[3pt] | |
− | + | \downarrow & \downarrow & \downarrow | |
− | + | \\[6pt] | |
− | + | \mathrm{A} & \mathrm{C} & \mathrm{B} | |
− | | | + | \end{matrix}</math> |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | \mathrm{A} & \mathrm{B} & \mathrm{C} | |
− | + | \\[3pt] | |
− | + | \downarrow & \downarrow & \downarrow | |
− | + | \\[6pt] | |
− | + | \mathrm{C} & \mathrm{B} & \mathrm{A} | |
− | + | \end{matrix}</math> | |
− | + | | | |
+ | <math>\begin{matrix} | ||
+ | \mathrm{A} & \mathrm{B} & \mathrm{C} | ||
+ | \\[3pt] | ||
+ | \downarrow & \downarrow & \downarrow | ||
+ | \\[6pt] | ||
+ | \mathrm{B} & \mathrm{A} & \mathrm{C} | ||
+ | \end{matrix}</math> | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<br> | <br> | ||
− | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
− | + | |+ <math>\text{Matrix Representations of Permutations in}~ \operatorname{Sym}(3)</math> | |
− | + | |- style="background:#f0f0ff" | |
− | + | | width="16%" | <math>\operatorname{e}</math> | |
− | + | | width="16%" | <math>\operatorname{f}</math> | |
− | + | | width="16%" | <math>\operatorname{g}</math> | |
− | + | | width="16%" | <math>\operatorname{h}</math> | |
− | + | | width="16%" | <math>\operatorname{i}</math> | |
− | + | | width="16%" | <math>\operatorname{j}</math> | |
− | + | |- | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 1 & 0 & 0 | |
− | + | \\ | |
− | + | 0 & 1 & 0 | |
− | + | \\ | |
− | + | 0 & 0 & 1 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 0 & 0 & 1 | |
− | + | \\ | |
− | + | 1 & 0 & 0 | |
− | + | \\ | |
− | + | 0 & 1 & 0 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 0 & 1 & 0 | |
− | + | \\ | |
− | + | 0 & 0 & 1 | |
− | + | \\ | |
− | + | 1 & 0 & 0 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 1 & 0 & 0 | |
− | + | \\ | |
− | + | 0 & 0 & 1 | |
− | + | \\ | |
− | + | 0 & 1 & 0 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
− | + | 0 & 0 & 1 | |
− | + | \\ | |
− | + | 0 & 1 & 0 | |
− | + | \\ | |
− | + | 1 & 0 & 0 | |
− | + | \end{matrix}</math> | |
− | + | | | |
− | + | <math>\begin{matrix} | |
+ | 0 & 1 & 0 | ||
+ | \\ | ||
+ | 1 & 0 & 0 | ||
+ | \\ | ||
+ | 0 & 0 & 1 | ||
+ | \end{matrix}</math> | ||
+ | |} | ||
+ | |||
<br> | <br> | ||
− | + | <pre> | |
− | + | Symmetric Group S_3 | |
− | + | o-------------------------------------------------o | |
− | + | | | | |
− | + | | ^ | | |
− | + | | e / \ e | | |
− | + | | / \ | | |
− | + | | / e \ | | |
− | + | | f / \ / \ f | | |
− | + | | / \ / \ | | |
− | + | | / f \ f \ | | |
− | + | | g / \ / \ / \ g | | |
− | + | | / \ / \ / \ | | |
− | + | | / g \ g \ g \ | | |
− | + | | h / \ / \ / \ / \ h | | |
− | + | | / \ / \ / \ / \ | | |
− | + | | / h \ e \ e \ h \ | | |
− | + | | i / \ / \ / \ / \ / \ i | | |
− | + | | / \ / \ / \ / \ / \ | | |
− | + | | / i \ i \ f \ j \ i \ | | |
− | + | | j / \ / \ / \ / \ / \ / \ j | | |
− | + | | / \ / \ / \ / \ / \ / \ | | |
− | + | | ( j \ j \ j \ i \ h \ j ) | | |
− | + | | \ / \ / \ / \ / \ / \ / | | |
− | + | | \ / \ / \ / \ / \ / \ / | | |
− | + | | \ h \ h \ e \ j \ i / | | |
− | + | | \ / \ / \ / \ / \ / | | |
− | + | | \ / \ / \ / \ / \ / | | |
− | + | | \ i \ g \ f \ h / | | |
− | + | | \ / \ / \ / \ / | | |
− | | | + | | \ / \ / \ / \ / | |
− | + | | \ f \ e \ g / | | |
− | + | | \ / \ / \ / | | |
− | | | + | | \ / \ / \ / | |
− | + | | \ g \ f / | | |
− | + | | \ / \ / | | |
− | + | | \ / \ / | | |
− | + | | \ e / | | |
− | + | | \ / | | |
− | + | | \ / | | |
− | + | | v | | |
− | + | | | | |
+ | o-------------------------------------------------o | ||
+ | </pre> | ||
+ | |||
<br> | <br> | ||
− | + | ===TeX Tables=== | |
− | + | ||
− | + | <pre> | |
− | + | \tableofcontents | |
− | + | ||
− | + | \subsection{Table A1. Propositional Forms on Two Variables} | |
− | + | ||
− | + | Table A1 lists equivalent expressions for the Boolean functions of two variables in a number of different notational systems. | |
− | + | ||
− | + | \begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|} | |
− | + | \multicolumn{7}{c}{\textbf{Table A1. Propositional Forms on Two Variables}} \\ | |
− | + | \hline | |
− | + | $\mathcal{L}_1$ & | |
− | + | $\mathcal{L}_2$ && | |
− | + | $\mathcal{L}_3$ & | |
− | + | $\mathcal{L}_4$ & | |
− | + | $\mathcal{L}_5$ & | |
− | + | $\mathcal{L}_6$ \\ | |
− | + | \hline | |
− | + | & & $x =$ & 1 1 0 0 & & & \\ | |
− | + | & & $y =$ & 1 0 1 0 & & & \\ | |
− | + | \hline | |
− | + | $f_{0}$ & | |
− | + | $f_{0000}$ && | |
− | + | 0 0 0 0 & | |
− | + | $(~)$ & | |
− | + | $\operatorname{false}$ & | |
− | + | $0$ \\ | |
− | + | $f_{1}$ & | |
− | + | $f_{0001}$ && | |
− | + | 0 0 0 1 & | |
− | + | $(x)(y)$ & | |
− | + | $\operatorname{neither}\ x\ \operatorname{nor}\ y$ & | |
− | + | $\lnot x \land \lnot y$ \\ | |
− | + | $f_{2}$ & | |
− | + | $f_{0010}$ && | |
− | + | 0 0 1 0 & | |
− | + | $(x)\ y$ & | |
− | + | $y\ \operatorname{without}\ x$ & | |
− | + | $\lnot x \land y$ \\ | |
− | + | $f_{3}$ & | |
− | + | $f_{0011}$ && | |
− | + | 0 0 1 1 & | |
− | + | $(x)$ & | |
− | + | $\operatorname{not}\ x$ & | |
− | + | $\lnot x$ \\ | |
− | + | $f_{4}$ & | |
− | + | $f_{0100}$ && | |
− | + | 0 1 0 0 & | |
− | + | $x\ (y)$ & | |
− | + | $x\ \operatorname{without}\ y$ & | |
− | + | $x \land \lnot y$ \\ | |
− | + | $f_{5}$ & | |
− | + | $f_{0101}$ && | |
− | + | 0 1 0 1 & | |
− | + | $(y)$ & | |
− | + | $\operatorname{not}\ y$ & | |
− | + | $\lnot y$ \\ | |
− | + | $f_{6}$ & | |
− | + | $f_{0110}$ && | |
− | + | 0 1 1 0 & | |
− | + | $(x,\ y)$ & | |
− | + | $x\ \operatorname{not~equal~to}\ y$ & | |
− | + | $x \ne y$ \\ | |
− | + | $f_{7}$ & | |
− | + | $f_{0111}$ && | |
− | + | 0 1 1 1 & | |
− | + | $(x\ y)$ & | |
− | + | $\operatorname{not~both}\ x\ \operatorname{and}\ y$ & | |
− | + | $\lnot x \lor \lnot y$ \\ | |
− | + | \hline | |
− | + | $f_{8}$ & | |
− | + | $f_{1000}$ && | |
− | + | 1 0 0 0 & | |
− | + | $x\ y$ & | |
− | + | $x\ \operatorname{and}\ y$ & | |
− | + | $x \land y$ \\ | |
− | + | $f_{9}$ & | |
− | + | $f_{1001}$ && | |
− | + | 1 0 0 1 & | |
− | + | $((x,\ y))$ & | |
− | + | $x\ \operatorname{equal~to}\ y$ & | |
− | + | $x = y$ \\ | |
− | + | $f_{10}$ & | |
− | + | $f_{1010}$ && | |
− | + | 1 0 1 0 & | |
− | + | $y$ & | |
− | + | $y$ & | |
− | + | $y$ \\ | |
− | + | $f_{11}$ & | |
− | + | $f_{1011}$ && | |
− | + | 1 0 1 1 & | |
− | + | $(x\ (y))$ & | |
− | + | $\operatorname{not}\ x\ \operatorname{without}\ y$ & | |
− | + | $x \Rightarrow y$ \\ | |
− | + | $f_{12}$ & | |
− | + | $f_{1100}$ && | |
+ | 1 1 0 0 & | ||
+ | $x$ & | ||
+ | $x$ & | ||
+ | $x$ \\ | ||
+ | $f_{13}$ & | ||
+ | $f_{1101}$ && | ||
+ | 1 1 0 1 & | ||
+ | $((x)\ y)$ & | ||
+ | $\operatorname{not}\ y\ \operatorname{without}\ x$ & | ||
+ | $x \Leftarrow y$ \\ | ||
+ | $f_{14}$ & | ||
+ | $f_{1110}$ && | ||
+ | 1 1 1 0 & | ||
+ | $((x)(y))$ & | ||
+ | $x\ \operatorname{or}\ y$ & | ||
+ | $x \lor y$ \\ | ||
+ | $f_{15}$ & | ||
+ | $f_{1111}$ && | ||
+ | 1 1 1 1 & | ||
+ | $((~))$ & | ||
+ | $\operatorname{true}$ & | ||
+ | $1$ \\ | ||
+ | \hline | ||
+ | \end{tabular}\end{quote} | ||
+ | |||
+ | \subsection{Table A2. Propositional Forms on Two Variables} | ||
+ | |||
+ | Table A2 lists the sixteen Boolean functions of two variables in a different order, grouping them by structural similarity into seven natural classes. | ||
− | + | \begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|} | |
− | + | \multicolumn{7}{c}{\textbf{Table A2. Propositional Forms on Two Variables}} \\ | |
− | + | \hline | |
− | + | $\mathcal{L}_1$ & | |
− | + | $\mathcal{L}_2$ && | |
− | + | $\mathcal{L}_3$ & | |
− | + | $\mathcal{L}_4$ & | |
− | + | $\mathcal{L}_5$ & | |
− | + | $\mathcal{L}_6$ \\ | |
− | + | \hline | |
− | + | & & $x =$ & 1 1 0 0 & & & \\ | |
− | + | & & $y =$ & 1 0 1 0 & & & \\ | |
− | + | \hline | |
− | + | $f_{0}$ & | |
− | + | $f_{0000}$ && | |
− | + | 0 0 0 0 & | |
− | + | $(~)$ & | |
− | + | $\operatorname{false}$ & | |
− | + | $0$ \\ | |
− | + | \hline | |
− | + | $f_{1}$ & | |
− | + | $f_{0001}$ && | |
− | + | 0 0 0 1 & | |
− | + | $(x)(y)$ & | |
− | + | $\operatorname{neither}\ x\ \operatorname{nor}\ y$ & | |
− | + | $\lnot x \land \lnot y$ \\ | |
− | + | $f_{2}$ & | |
− | + | $f_{0010}$ && | |
− | + | 0 0 1 0 & | |
− | + | $(x)\ y$ & | |
− | + | $y\ \operatorname{without}\ x$ & | |
− | + | $\lnot x \land y$ \\ | |
− | + | $f_{4}$ & | |
− | + | $f_{0100}$ && | |
− | + | 0 1 0 0 & | |
− | + | $x\ (y)$ & | |
− | + | $x\ \operatorname{without}\ y$ & | |
− | + | $x \land \lnot y$ \\ | |
− | + | $f_{8}$ & | |
− | + | $f_{1000}$ && | |
− | + | 1 0 0 0 & | |
− | + | $x\ y$ & | |
− | + | $x\ \operatorname{and}\ y$ & | |
− | + | $x \land y$ \\ | |
− | + | \hline | |
− | + | $f_{3}$ & | |
− | + | $f_{0011}$ && | |
− | + | 0 0 1 1 & | |
− | + | $(x)$ & | |
− | + | $\operatorname{not}\ x$ & | |
− | + | $\lnot x$ \\ | |
− | + | $f_{12}$ & | |
− | + | $f_{1100}$ && | |
− | + | 1 1 0 0 & | |
− | + | $x$ & | |
− | + | $x$ & | |
− | + | $x$ \\ | |
− | + | \hline | |
− | + | $f_{6}$ & | |
− | + | $f_{0110}$ && | |
− | + | 0 1 1 0 & | |
− | + | $(x,\ y)$ & | |
− | + | $x\ \operatorname{not~equal~to}\ y$ & | |
− | + | $x \ne y$ \\ | |
− | + | $f_{9}$ & | |
− | + | $f_{1001}$ && | |
− | + | 1 0 0 1 & | |
− | + | $((x,\ y))$ & | |
− | + | $x\ \operatorname{equal~to}\ y$ & | |
− | + | $x = y$ \\ | |
− | + | \hline | |
− | + | $f_{5}$ & | |
− | + | $f_{0101}$ && | |
− | + | 0 1 0 1 & | |
− | + | $(y)$ & | |
− | { | + | $\operatorname{not}\ y$ & |
− | + | $\lnot y$ \\ | |
− | + | $f_{10}$ & | |
− | + | $f_{1010}$ && | |
− | + | 1 0 1 0 & | |
− | + | $y$ & | |
− | + | $y$ & | |
− | + | $y$ \\ | |
− | + | \hline | |
− | + | $f_{7}$ & | |
− | + | $f_{0111}$ && | |
− | + | 0 1 1 1 & | |
− | + | $(x\ y)$ & | |
− | + | $\operatorname{not~both}\ x\ \operatorname{and}\ y$ & | |
− | + | $\lnot x \lor \lnot y$ \\ | |
− | + | $f_{11}$ & | |
− | + | $f_{1011}$ && | |
− | + | 1 0 1 1 & | |
− | + | $(x\ (y))$ & | |
− | + | $\operatorname{not}\ x\ \operatorname{without}\ y$ & | |
− | + | $x \Rightarrow y$ \\ | |
− | + | $f_{13}$ & | |
− | + | $f_{1101}$ && | |
− | + | 1 1 0 1 & | |
− | + | $((x)\ y)$ & | |
− | + | $\operatorname{not}\ y\ \operatorname{without}\ x$ & | |
− | + | $x \Leftarrow y$ \\ | |
− | + | $f_{14}$ & | |
− | + | $f_{1110}$ && | |
− | + | 1 1 1 0 & | |
− | + | $((x)(y))$ & | |
− | + | $x\ \operatorname{or}\ y$ & | |
− | + | $x \lor y$ \\ | |
− | + | \hline | |
− | + | $f_{15}$ & | |
− | + | $f_{1111}$ && | |
− | + | 1 1 1 1 & | |
− | + | $((~))$ & | |
− | + | $\operatorname{true}$ & | |
− | + | $1$ \\ | |
− | + | \hline | |
− | + | \end{tabular}\end{quote} | |
− | + | ||
− | + | \subsection{Table A3. $\operatorname{E}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {| | + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} |
− | | | + | \multicolumn{6}{c}{\textbf{Table A3. $\operatorname{E}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}} \\ |
− | | | + | \hline |
− | + | & & | |
− | + | $\operatorname{T}_{11}$ & | |
− | + | $\operatorname{T}_{10}$ & | |
− | + | $\operatorname{T}_{01}$ & | |
− | + | $\operatorname{T}_{00}$ \\ | |
− | + | & $f$ & | |
− | + | $\operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y}$ & | |
− | + | $\operatorname{E}f|_{\operatorname{d}x (\operatorname{d}y)}$ & | |
− | + | $\operatorname{E}f|_{(\operatorname{d}x) \operatorname{d}y}$ & | |
− | + | $\operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)}$ \\ | |
− | + | \hline | |
− | + | $f_{0}$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ \\ | |
− | + | \hline | |
− | + | $f_{1}$ & $(x)(y)$ & $x\ y$ & $x\ (y)$ & $(x)\ y$ & $(x)(y)$ \\ | |
− | + | $f_{2}$ & $(x)\ y$ & $x\ (y)$ & $x\ y$ & $(x)(y)$ & $(x)\ y$ \\ | |
− | | | + | $f_{4}$ & $x\ (y)$ & $(x)\ y$ & $(x)(y)$ & $x\ y$ & $x\ (y)$ \\ |
− | + | $f_{8}$ & $x\ y$ & $(x)(y)$ & $(x)\ y$ & $x\ (y)$ & $x\ y$ \\ | |
− | | & | + | \hline |
− | | & | + | $f_{3}$ & $(x)$ & $x$ & $x$ & $(x)$ & $(x)$ \\ |
− | | | + | $f_{12}$ & $x$ & $(x)$ & $(x)$ & $x$ & $x$ \\ |
− | + | \hline | |
− | + | $f_{6}$ & $(x,\ y)$ & $(x,\ y)$ & $((x,\ y))$ & $((x,\ y))$ & $(x,\ y)$ \\ | |
− | + | $f_{9}$ & $((x,\ y))$ & $((x,\ y))$ & $(x,\ y)$ & $(x,\ y)$ & $((x,\ y))$ \\ | |
− | + | \hline | |
− | + | $f_{5}$ & $(y)$ & $y$ & $(y)$ & $y$ & $(y)$ \\ | |
− | + | $f_{10}$ & $y$ & $(y)$ & $y$ & $(y)$ & $y$ \\ | |
− | + | \hline | |
− | + | $f_{7}$ & $(x\ y)$ & $((x)(y))$ & $((x)\ y)$ & $(x\ (y))$ & $(x\ y)$ \\ | |
− | + | $f_{11}$ & $(x\ (y))$ & $((x)\ y)$ & $((x)(y))$ & $(x\ y)$ & $(x\ (y))$ \\ | |
− | + | $f_{13}$ & $((x)\ y)$ & $(x\ (y))$ & $(x\ y)$ & $((x)(y))$ & $((x)\ y)$ \\ | |
− | + | $f_{14}$ & $((x)(y))$ & $(x\ y)$ & $(x\ (y))$ & $((x)\ y)$ & $((x)(y))$ \\ | |
− | + | \hline | |
− | + | $f_{15}$ & $((~))$ & $((~))$ & $((~))$ & $((~))$ & $((~))$ \\ | |
− | + | \hline | |
− | + | \multicolumn{2}{|c||}{\PMlinkname{Fixed Point}{FixedPoint} Total:} & 4 & 4 & 4 & 16 \\ | |
− | + | \hline | |
− | + | \end{tabular}\end{quote} | |
− | + | ||
− | + | \subsection{Table A4. $\operatorname{D}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$} | |
− | + | ||
− | + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} | |
− | | | + | \multicolumn{6}{c}{\textbf{Table A4. $\operatorname{D}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}} \\ |
− | | | + | \hline |
− | | f | + | & $f$ & |
− | + | $\operatorname{D}f|_{\operatorname{d}x\ \operatorname{d}y}$ & | |
− | + | $\operatorname{D}f|_{\operatorname{d}x (\operatorname{d}y)}$ & | |
− | + | $\operatorname{D}f|_{(\operatorname{d}x) \operatorname{d}y}$ & | |
− | + | $\operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)}$ \\ | |
− | + | \hline | |
− | + | $f_{0}$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ \\ | |
− | + | \hline | |
− | + | $f_{1}$ & $(x)(y)$ & $((x,\ y))$ & $(y)$ & $(x)$ & $(~)$ \\ | |
− | + | $f_{2}$ & $(x)\ y$ & $(x,\ y)$ & $y$ & $(x)$ & $(~)$ \\ | |
− | + | $f_{4}$ & $x\ (y)$ & $(x,\ y)$ & $(y)$ & $x$ & $(~)$ \\ | |
+ | $f_{8}$ & $x\ y$ & $((x,\ y))$ & $y$ & $x$ & $(~)$ \\ | ||
+ | \hline | ||
+ | $f_{3}$ & $(x)$ & $((~))$ & $((~))$ & $(~)$ & $(~)$ \\ | ||
+ | $f_{12}$ & $x$ & $((~))$ & $((~))$ & $(~)$ & $(~)$ \\ | ||
+ | \hline | ||
+ | $f_{6}$ & $(x,\ y)$ & $(~)$ & $((~))$ & $((~))$ & $(~)$ \\ | ||
+ | $f_{9}$ & $((x,\ y))$ & $(~)$ & $((~))$ & $((~))$ & $(~)$ \\ | ||
+ | \hline | ||
+ | $f_{5}$ & $(y)$ & $((~))$ & $(~)$ & $((~))$ & $(~)$ \\ | ||
+ | $f_{10}$ & $y$ & $((~))$ & $(~)$ & $((~))$ & $(~)$ \\ | ||
+ | \hline | ||
+ | $f_{7}$ & $(x\ y)$ & $((x,\ y))$ & $y$ & $x$ & $(~)$ \\ | ||
+ | $f_{11}$ & $(x\ (y))$ & $(x,\ y)$ & $(y)$ & $x$ & $(~)$ \\ | ||
+ | $f_{13}$ & $((x)\ y)$ & $(x,\ y)$ & $y$ & $(x)$ & $(~)$ \\ | ||
+ | $f_{14}$ & $((x)(y))$ & $((x,\ y))$ & $(y)$ & $(x)$ & $(~)$ \\ | ||
+ | \hline | ||
+ | $f_{15}$ & $((~))$ & $(~)$ & $(~)$ & $(~)$ & $(~)$ \\ | ||
+ | \hline | ||
+ | \end{tabular}\end{quote} | ||
− | + | \subsection{Table A5. $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$} | |
− | {| | + | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} |
− | | | + | \multicolumn{6}{c}{\textbf{Table A5. $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$}} \\ |
− | | | + | \hline |
− | + | & $f$ & | |
− | + | $\operatorname{E}f|_{x\ y}$ & | |
− | + | $\operatorname{E}f|_{x (y)}$ & | |
− | + | $\operatorname{E}f|_{(x) y}$ & | |
− | + | $\operatorname{E}f|_{(x)(y)}$ \\ | |
− | + | \hline | |
− | + | $f_{0}$ & | |
− | + | $(~)$ & | |
− | + | $(~)$ & | |
− | + | $(~)$ & | |
− | + | $(~)$ & | |
− | + | $(~)$ \\ | |
− | + | \hline | |
− | | & | + | $f_{1}$ & |
− | | & | + | $(x)(y)$ & |
− | + | $\operatorname{d}x\ \operatorname{d}y$ & | |
− | | & | + | $\operatorname{d}x\ (\operatorname{d}y)$ & |
− | | | + | $(\operatorname{d}x)\ \operatorname{d}y$ & |
− | + | $(\operatorname{d}x)(\operatorname{d}y)$ \\ | |
− | + | $f_{2}$ & | |
− | + | $(x)\ y$ & | |
− | + | $\operatorname{d}x\ (\operatorname{d}y)$ & | |
− | + | $\operatorname{d}x\ \operatorname{d}y$ & | |
− | + | $(\operatorname{d}x)(\operatorname{d}y)$ & | |
− | + | $(\operatorname{d}x)\ \operatorname{d}y$ \\ | |
− | + | $f_{4}$ & | |
− | + | $x\ (y)$ & | |
− | + | $(\operatorname{d}x)\ \operatorname{d}y$ & | |
− | + | $(\operatorname{d}x)(\operatorname{d}y)$ & | |
− | + | $\operatorname{d}x\ \operatorname{d}y$ & | |
− | + | $\operatorname{d}x\ (\operatorname{d}y)$ \\ | |
− | + | $f_{8}$ & | |
− | + | $x\ y$ & | |
− | + | $(\operatorname{d}x)(\operatorname{d}y)$ & | |
− | + | $(\operatorname{d}x)\ \operatorname{d}y$ & | |
− | + | $\operatorname{d}x\ (\operatorname{d}y)$ & | |
− | + | $\operatorname{d}x\ \operatorname{d}y$ \\ | |
− | + | \hline | |
− | + | $f_{3}$ & | |
− | + | $(x)$ & | |
− | + | $\operatorname{d}x$ & | |
− | + | $\operatorname{d}x$ & | |
− | + | $(\operatorname{d}x)$ & | |
− | + | $(\operatorname{d}x)$ \\ | |
− | + | $f_{12}$ & | |
− | + | $x$ & | |
− | + | $(\operatorname{d}x)$ & | |
− | + | $(\operatorname{d}x)$ & | |
− | + | $\operatorname{d}x$ & | |
− | + | $\operatorname{d}x$ \\ | |
− | + | \hline | |
− | + | $f_{6}$ & | |
− | + | $(x,\ y)$ & | |
− | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
− | + | $((\operatorname{d}x,\ \operatorname{d}y))$ & | |
− | + | $((\operatorname{d}x,\ \operatorname{d}y))$ & | |
− | + | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ | |
− | + | $f_{9}$ & | |
− | + | $((x,\ y))$ & | |
− | + | $((\operatorname{d}x,\ \operatorname{d}y))$ & | |
− | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
− | + | $(\operatorname{d}x,\ \operatorname{d}y)$ & | |
− | + | $((\operatorname{d}x,\ \operatorname{d}y))$ \\ | |
− | + | \hline | |
− | + | $f_{5}$ & | |
− | + | $(y)$ & | |
− | { | + | $\operatorname{d}y$ & |
− | + | $(\operatorname{d}y)$ & | |
− | + | $\operatorname{d}y$ & | |
− | + | $(\operatorname{d}y)$ \\ | |
− | + | $f_{10}$ & | |
− | + | $y$ & | |
− | + | $(\operatorname{d}y)$ & | |
− | + | $\operatorname{d}y$ & | |
− | + | $(\operatorname{d}y)$ & | |
− | + | $\operatorname{d}y$ \\ | |
− | + | \hline | |
+ | $f_{7}$ & | ||
+ | $(x\ y)$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $((\operatorname{d}x)\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x\ (\operatorname{d}y))$ & | ||
+ | $(\operatorname{d}x\ \operatorname{d}y)$ \\ | ||
+ | $f_{11}$ & | ||
+ | $(x\ (y))$ & | ||
+ | $((\operatorname{d}x)\ \operatorname{d}y)$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $(\operatorname{d}x\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x\ (\operatorname{d}y))$ \\ | ||
+ | $f_{13}$ & | ||
+ | $((x)\ y)$ & | ||
+ | $(\operatorname{d}x\ (\operatorname{d}y))$ & | ||
+ | $(\operatorname{d}x\ \operatorname{d}y)$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $((\operatorname{d}x)\ \operatorname{d}y)$ \\ | ||
+ | $f_{14}$ & | ||
+ | $((x)(y))$ & | ||
+ | $(\operatorname{d}x\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x\ (\operatorname{d}y))$ & | ||
+ | $((\operatorname{d}x)\ \operatorname{d}y)$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ \\ | ||
+ | \hline | ||
+ | $f_{15}$ & | ||
+ | $((~))$ & | ||
+ | $((~))$ & | ||
+ | $((~))$ & | ||
+ | $((~))$ & | ||
+ | $((~))$ \\ | ||
+ | \hline | ||
+ | \end{tabular}\end{quote} | ||
− | + | \subsection{Table A6. $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$} | |
+ | |||
+ | \begin{quote}\begin{tabular}{|c|c||c|c|c|c|} | ||
+ | \multicolumn{6}{c}{\textbf{Table A6. $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$}} \\ | ||
+ | \hline | ||
+ | & $f$ & | ||
+ | $\operatorname{D}f|_{x\ y}$ & | ||
+ | $\operatorname{D}f|_{x (y)}$ & | ||
+ | $\operatorname{D}f|_{(x) y}$ & | ||
+ | $\operatorname{D}f|_{(x)(y)}$ \\ | ||
+ | \hline | ||
+ | $f_{0}$ & | ||
+ | $(~)$ & | ||
+ | $(~)$ & | ||
+ | $(~)$ & | ||
+ | $(~)$ & | ||
+ | $(~)$ \\ | ||
+ | \hline | ||
+ | $f_{1}$ & | ||
+ | $(x)(y)$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ \\ | ||
+ | $f_{2}$ & | ||
+ | $(x)\ y$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ \\ | ||
+ | $f_{4}$ & | ||
+ | $x\ (y)$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ \\ | ||
+ | $f_{8}$ & | ||
+ | $x\ y$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ \\ | ||
+ | \hline | ||
+ | $f_{3}$ & | ||
+ | $(x)$ & | ||
+ | $\operatorname{d}x$ & | ||
+ | $\operatorname{d}x$ & | ||
+ | $\operatorname{d}x$ & | ||
+ | $\operatorname{d}x$ \\ | ||
+ | $f_{12}$ & | ||
+ | $x$ & | ||
+ | $\operatorname{d}x$ & | ||
+ | $\operatorname{d}x$ & | ||
+ | $\operatorname{d}x$ & | ||
+ | $\operatorname{d}x$ \\ | ||
+ | \hline | ||
+ | $f_{6}$ & | ||
+ | $(x,\ y)$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ | ||
+ | $f_{9}$ & | ||
+ | $((x,\ y))$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x,\ \operatorname{d}y)$ \\ | ||
+ | \hline | ||
+ | $f_{5}$ & | ||
+ | $(y)$ & | ||
+ | $\operatorname{d}y$ & | ||
+ | $\operatorname{d}y$ & | ||
+ | $\operatorname{d}y$ & | ||
+ | $\operatorname{d}y$ \\ | ||
+ | $f_{10}$ & | ||
+ | $y$ & | ||
+ | $\operatorname{d}y$ & | ||
+ | $\operatorname{d}y$ & | ||
+ | $\operatorname{d}y$ & | ||
+ | $\operatorname{d}y$ \\ | ||
+ | \hline | ||
+ | $f_{7}$ & | ||
+ | $(x\ y)$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ \\ | ||
+ | $f_{11}$ & | ||
+ | $(x\ (y))$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ \\ | ||
+ | $f_{13}$ & | ||
+ | $((x)\ y)$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ \\ | ||
+ | $f_{14}$ & | ||
+ | $((x)(y))$ & | ||
+ | $\operatorname{d}x\ \operatorname{d}y$ & | ||
+ | $\operatorname{d}x\ (\operatorname{d}y)$ & | ||
+ | $(\operatorname{d}x)\ \operatorname{d}y$ & | ||
+ | $((\operatorname{d}x)(\operatorname{d}y))$ \\ | ||
+ | \hline | ||
+ | $f_{15}$ & | ||
+ | $((~))$ & | ||
+ | $(~)$ & | ||
+ | $(~)$ & | ||
+ | $(~)$ & | ||
+ | $(~)$ \\ | ||
+ | \hline | ||
+ | \end{tabular}\end{quote} | ||
+ | </pre> | ||
+ | |||
+ | ==Group Operation Tables== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<br> | <br> | ||
− | ==== | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" |
+ | |+ <math>\text{Table 32.1}~~\text{Scheme of a Group Operation Table}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>*\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>x_0\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>\cdots\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>x_j\!</math> | ||
+ | | style="border-bottom:1px solid black" | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
+ | | <math>x_0 * x_0\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>x_0 * x_j\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
+ | | <math>x_i * x_0\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>x_i * x_j\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | |} | ||
− | + | <br> | |
− | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | |
− | + | |+ <math>\text{Table 32.2}~~\text{Scheme of the Regular Ante-Representation}</math> | |
− | {| align="center | + | |- style="height:50px" |
− | |+ | + | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> |
− | |- style=" | + | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> |
− | ! style=" | + | |- style="height:50px" |
− | + | | style="border-right:1px solid black" | <math>x_0\!</math> | |
− | ! style=" | + | | <math>\{\!</math> |
− | | | + | | <math>(x_0 ~,~ x_0 * x_0),\!</math> |
− | | | + | | <math>\cdots\!</math> |
− | |- | + | | <math>(x_j ~,~ x_0 * x_j),\!</math> |
− | | | + | | <math>\cdots\!</math> |
− | |- | + | | <math>\}\!</math> |
− | | | + | |- style="height:50px" |
− | | | + | | style="border-right:1px solid black" | <math>\cdots\!</math> |
− | | | + | | <math>\{\!</math> |
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(x_0 ~,~ x_i * x_0),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>(x_j ~,~ x_i * x_j),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
|} | |} | ||
+ | |||
<br> | <br> | ||
− | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:80%" | |
+ | |+ <math>\text{Table 32.3}~~\text{Scheme of the Regular Post-Representation}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_0\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(x_0 ~,~ x_0 * x_0),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>(x_j ~,~ x_j * x_0),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>x_i\!</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(x_0 ~,~ x_0 * x_i),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>(x_j ~,~ x_j * x_i),\!</math> | ||
+ | | <math>\cdots\!</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="12%" style="border-right:1px solid black" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="22%" | <math>\cdots\!</math> | ||
+ | | width="18%" | <math>\cdots\!</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |} | ||
− | + | <br> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits is odd. | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | + | |+ <math>\text{Table 33.1}~~\text{Multiplication Operation of the Group}~V_4</math> | |
− | <pre> | + | |- style="height:50px" |
− | A + B = (A ∧ !B) ∨ (!A ∧ B) | + | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> |
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{h}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{h}</math> | ||
+ | | <math>\operatorname{g}</math> | ||
+ | | <math>\operatorname{f}</math> | ||
+ | | <math>\operatorname{e}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 33.2}~~\text{Regular Representation of the Group}~V_4</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>(\operatorname{e}, \operatorname{e}),</math> | ||
+ | | width="20%" | <math>(\operatorname{f}, \operatorname{f}),</math> | ||
+ | | width="20%" | <math>(\operatorname{g}, \operatorname{g}),</math> | ||
+ | | width="16%" | <math>(\operatorname{h}, \operatorname{h})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{e}, \operatorname{f}),</math> | ||
+ | | <math>(\operatorname{f}, \operatorname{e}),</math> | ||
+ | | <math>(\operatorname{g}, \operatorname{h}),</math> | ||
+ | | <math>(\operatorname{h}, \operatorname{g})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{e}, \operatorname{g}),</math> | ||
+ | | <math>(\operatorname{f}, \operatorname{h}),</math> | ||
+ | | <math>(\operatorname{g}, \operatorname{e}),</math> | ||
+ | | <math>(\operatorname{h}, \operatorname{f})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{e}, \operatorname{h}),</math> | ||
+ | | <math>(\operatorname{f}, \operatorname{g}),</math> | ||
+ | | <math>(\operatorname{g}, \operatorname{f}),</math> | ||
+ | | <math>(\operatorname{h}, \operatorname{e})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 33.3}~~\text{Regular Representation of the Group}~V_4</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Symbols}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{e}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
+ | | width="20%" | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
+ | | width="20%" | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
+ | | width="16%" | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{f}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{g}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{h}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{e}{}^{\prime\prime}, {}^{\backprime\backprime}\text{h}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{f}{}^{\prime\prime}, {}^{\backprime\backprime}\text{g}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{g}{}^{\prime\prime}, {}^{\backprime\backprime}\text{f}{}^{\prime\prime}),</math> | ||
+ | | <math>({}^{\backprime\backprime}\text{h}{}^{\prime\prime}, {}^{\backprime\backprime}\text{e}{}^{\prime\prime})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 34.1}~~\text{Multiplicative Presentation of the Group}~Z_4(\cdot)</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot\!</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{a}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{b}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{c}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{c}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{a}</math> | ||
+ | | <math>\operatorname{b}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 34.2}~~\text{Regular Representation of the Group}~Z_4(\cdot)</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>(\operatorname{1}, \operatorname{1}),</math> | ||
+ | | width="20%" | <math>(\operatorname{a}, \operatorname{a}),</math> | ||
+ | | width="20%" | <math>(\operatorname{b}, \operatorname{b}),</math> | ||
+ | | width="16%" | <math>(\operatorname{c}, \operatorname{c})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{a}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{a}),</math> | ||
+ | | <math>(\operatorname{a}, \operatorname{b}),</math> | ||
+ | | <math>(\operatorname{b}, \operatorname{c}),</math> | ||
+ | | <math>(\operatorname{c}, \operatorname{1})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{b}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{b}),</math> | ||
+ | | <math>(\operatorname{a}, \operatorname{c}),</math> | ||
+ | | <math>(\operatorname{b}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{c}, \operatorname{a})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{c}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{c}),</math> | ||
+ | | <math>(\operatorname{a}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{b}, \operatorname{a}),</math> | ||
+ | | <math>(\operatorname{c}, \operatorname{b})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 35.1}~~\text{Additive Presentation of the Group}~Z_4(+)</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>+\!</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{0}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{2}</math> | ||
+ | | width="20%" style="border-bottom:1px solid black" | <math>\operatorname{3}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{3}</math> | ||
+ | | <math>\operatorname{0}</math> | ||
+ | | <math>\operatorname{1}</math> | ||
+ | | <math>\operatorname{2}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 35.2}~~\text{Regular Representation of the Group}~Z_4(+)</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-bottom:1px solid black; border-right:1px solid black" | <math>\text{Element}\!</math> | ||
+ | | colspan="6" style="border-bottom:1px solid black" | <math>\text{Function as Set of Ordered Pairs of Elements}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | width="20%" style="border-right:1px solid black" | <math>\operatorname{0}</math> | ||
+ | | width="4%" | <math>\{\!</math> | ||
+ | | width="16%" | <math>(\operatorname{0}, \operatorname{0}),</math> | ||
+ | | width="20%" | <math>(\operatorname{1}, \operatorname{1}),</math> | ||
+ | | width="20%" | <math>(\operatorname{2}, \operatorname{2}),</math> | ||
+ | | width="16%" | <math>(\operatorname{3}, \operatorname{3})</math> | ||
+ | | width="4%" | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{1}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{0}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{2}),</math> | ||
+ | | <math>(\operatorname{2}, \operatorname{3}),</math> | ||
+ | | <math>(\operatorname{3}, \operatorname{0})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{2}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{0}, \operatorname{2}),</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{3}),</math> | ||
+ | | <math>(\operatorname{2}, \operatorname{0}),</math> | ||
+ | | <math>(\operatorname{3}, \operatorname{1})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |- style="height:50px" | ||
+ | | style="border-right:1px solid black" | <math>\operatorname{3}</math> | ||
+ | | <math>\{\!</math> | ||
+ | | <math>(\operatorname{0}, \operatorname{3}),</math> | ||
+ | | <math>(\operatorname{1}, \operatorname{0}),</math> | ||
+ | | <math>(\operatorname{2}, \operatorname{1}),</math> | ||
+ | | <math>(\operatorname{3}, \operatorname{2})</math> | ||
+ | | <math>\}\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ==Higher Order Propositions== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" cellpadding="4" cellspacing="0" style="text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 1.} ~~ \text{Higher Order Propositions} ~ (n = 1)</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:2px solid black" align="right"><math>x:</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>1 ~ 0</math></td> | ||
+ | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{0}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{1}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{2}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{3}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{4}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{5}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{6}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{7}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{8}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{9}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{10}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{11}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{12}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{13}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{14}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>m_{15}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{0}</math></td> | ||
+ | <td><math>0 ~ 0</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{1}</math></td> | ||
+ | <td><math>0 ~ 1</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} x \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{2}</math></td> | ||
+ | <td><math>1 ~ 0</math></td> | ||
+ | <td style="border-right:2px solid black"><math>x</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{3}</math></td> | ||
+ | <td><math>1 ~ 1</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 2.} ~~ \text{Interpretive Categories for Higher Order Propositions} ~ (n = 1)</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:2px solid black; border-right:2px solid black">Measure</td> | ||
+ | <td style="border-bottom:2px solid black">Happening</td> | ||
+ | <td style="border-bottom:2px solid black">Exactness</td> | ||
+ | <td style="border-bottom:2px solid black">Existence</td> | ||
+ | <td style="border-bottom:2px solid black">Linearity</td> | ||
+ | <td style="border-bottom:2px solid black">Uniformity</td> | ||
+ | <td style="border-bottom:2px solid black">Information</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{0}</math></td> | ||
+ | <td>Nothing happens</td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{1}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Just false</td> | ||
+ | <td>Nothing exists</td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{2}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Just not <math>x</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{3}</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td>Nothing is <math>x</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{4}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Just <math>x</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{5}</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td>Everything is <math>x</math></td> | ||
+ | <td><math>f</math> is linear</td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{6}</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td><math>f</math> is not uniform</td> | ||
+ | <td><math>f</math> is informed</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{7}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Not just true</td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{8}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Just true</td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{9}</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td><math>f</math> is uniform</td> | ||
+ | <td><math>f</math> is not informed</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{10}</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td>Something is not <math>x</math></td> | ||
+ | <td><math>f</math> is not linear</td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{11}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Not just <math>x</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{12}</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td>Something is <math>x</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{13}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Not just not <math>x</math></td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{14}</math></td> | ||
+ | <td> </td> | ||
+ | <td>Not just false</td> | ||
+ | <td>Something exists</td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-right:2px solid black"><math>m_{15}</math></td> | ||
+ | <td>Anything happens</td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td> </td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" cellpadding="1" cellspacing="0" style="background:white; color:black; text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 3.} ~~ \text{Higher Order Propositions} ~ (n = 2)</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:2px solid black" align="right"><math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
+ | <td style="border-bottom:2px solid black"> | ||
+ | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
+ | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{0}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{1}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{2}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{3}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{4}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{5}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{6}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{7}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{8}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{9}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{10}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{11}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{12}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{13}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{14}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{15}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{16}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{17}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{18}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{19}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{20}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{21}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{22}{m}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\underset{23}{m}</math></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{0}</math></td> | ||
+ | <td><math>0000</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{1}</math></td> | ||
+ | <td><math>0001</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
+ | <td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{2}</math></td> | ||
+ | <td><math>0010</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{3}</math></td> | ||
+ | <td><math>0011</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{4}</math></td> | ||
+ | <td><math>0100</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{5}</math></td> | ||
+ | <td><math>0101</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{6}</math></td> | ||
+ | <td><math>0110</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{7}</math></td> | ||
+ | <td><math>0111</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{8}</math></td> | ||
+ | <td><math>1000</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u ~ v</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{9}</math></td> | ||
+ | <td><math>1001</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{10}</math></td> | ||
+ | <td><math>1010</math></td> | ||
+ | <td style="border-right:2px solid black"><math>v</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{11}</math></td> | ||
+ | <td><math>1011</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{12}</math></td> | ||
+ | <td><math>1100</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{13}</math></td> | ||
+ | <td><math>1101</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{14}</math></td> | ||
+ | <td><math>1110</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{15}</math></td> | ||
+ | <td><math>1111</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td> | ||
+ | <td>0</td><td>0</td><td>0</td><td>0</td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" cellpadding="1" cellspacing="0" style="text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 4.} ~~ \text{Qualifiers of the Implication Ordering:} ~ \alpha_{i} f = \Upsilon (f_{i}, f) = \Upsilon (f_{i} \Rightarrow f)</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:2px solid black" align="right"> | ||
+ | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
+ | <td style="border-bottom:2px solid black"> | ||
+ | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
+ | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{15}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{14}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{13}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{12}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{11}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{10}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{9}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{8}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{7}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{6}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{5}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{4}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{3}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{2}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{1}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\alpha_{0}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{0}</math></td> | ||
+ | <td><math>0000</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{1}</math></td> | ||
+ | <td><math>0001</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{2}</math></td> | ||
+ | <td><math>0010</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{3}</math></td> | ||
+ | <td><math>0011</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{4}</math></td> | ||
+ | <td><math>0100</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{5}</math></td> | ||
+ | <td><math>0101</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{6}</math></td> | ||
+ | <td><math>0110</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{7}</math></td> | ||
+ | <td><math>0111</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{8}</math></td> | ||
+ | <td><math>1000</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u ~ v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{9}</math></td> | ||
+ | <td><math>1001</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{10}</math></td> | ||
+ | <td><math>1010</math></td> | ||
+ | <td style="border-right:2px solid black"><math>v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{11}</math></td> | ||
+ | <td><math>1011</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{12}</math></td> | ||
+ | <td><math>1100</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{13}</math></td> | ||
+ | <td><math>1101</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{14}</math></td> | ||
+ | <td><math>1110</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{15}</math></td> | ||
+ | <td><math>1111</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" cellpadding="1" cellspacing="0" style="text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 5.} ~~ \text{Qualifiers of the Implication Ordering:} ~ \beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:2px solid black" align="right"> | ||
+ | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
+ | <td style="border-bottom:2px solid black"> | ||
+ | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
+ | |||
+ | <td style="border-bottom:2px solid black; border-right:2px solid black"><math>f</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{0}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{1}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{2}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{3}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{4}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{5}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{6}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{7}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{8}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{9}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{10}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{11}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{12}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{13}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{14}</math></td> | ||
+ | <td style="border-bottom:2px solid black"><math>\beta_{15}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{0}</math></td> | ||
+ | <td><math>0000</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(~)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{1}</math></td> | ||
+ | <td><math>0001</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{2}</math></td> | ||
+ | <td><math>0010</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{3}</math></td> | ||
+ | <td><math>0011</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{4}</math></td> | ||
+ | <td><math>0100</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{5}</math></td> | ||
+ | <td><math>0101</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{6}</math></td> | ||
+ | <td><math>0110</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{7}</math></td> | ||
+ | <td><math>0111</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{8}</math></td> | ||
+ | <td><math>1000</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u ~ v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{9}</math></td> | ||
+ | <td><math>1001</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{10}</math></td> | ||
+ | <td><math>1010</math></td> | ||
+ | <td style="border-right:2px solid black"><math>v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{11}</math></td> | ||
+ | <td><math>1011</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{12}</math></td> | ||
+ | <td><math>1100</math></td> | ||
+ | <td style="border-right:2px solid black"><math>u</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{13}</math></td> | ||
+ | <td><math>1101</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{14}</math></td> | ||
+ | <td><math>1110</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{15}</math></td> | ||
+ | <td><math>1111</math></td> | ||
+ | <td style="border-right:2px solid black"><math>\texttt{((~))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ <math>\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}</math> | ||
+ | | | ||
+ | <math>\begin{array}{clcl} | ||
+ | \mathrm{A} | ||
+ | & \mathrm{Universal~Affirmative} | ||
+ | & \mathrm{All} ~ u ~ \mathrm{is} ~ v | ||
+ | & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 0 | ||
+ | \\ | ||
+ | \mathrm{E} | ||
+ | & \mathrm{Universal~Negative} | ||
+ | & \mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | & \mathrm{Indicator~of} ~ u \cdot v = 0 | ||
+ | \\ | ||
+ | \mathrm{I} | ||
+ | & \mathrm{Particular~Affirmative} | ||
+ | & \mathrm{Some} ~ u ~ \mathrm{is} ~ v | ||
+ | & \mathrm{Indicator~of} ~ u \cdot v = 1 | ||
+ | \\ | ||
+ | \mathrm{O} | ||
+ | & \mathrm{Particular~Negative} | ||
+ | & \mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 1 | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" cellpadding="4" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 8.} ~~ \text{Simple Qualifiers of Propositions (Version 1)}</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td width="4%" style="border-bottom:1px solid black" align="right"> | ||
+ | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
+ | <td width="6%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black; border-right:1px solid black"> | ||
+ | <math>f</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{11} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{10} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{01} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{00} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{00} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{01} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{10} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{11} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{0}</math></td> | ||
+ | <td><math>0000</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(~)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{1}</math></td> | ||
+ | <td><math>0001</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{2}</math></td> | ||
+ | <td><math>0010</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{3}</math></td> | ||
+ | <td><math>0011</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{4}</math></td> | ||
+ | <td><math>0100</math></td> | ||
+ | <td style="border-right:1px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{5}</math></td> | ||
+ | <td><math>0101</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{6}</math></td> | ||
+ | <td><math>0110</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{7}</math></td> | ||
+ | <td><math>0111</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{8}</math></td> | ||
+ | <td><math>1000</math></td> | ||
+ | <td style="border-right:1px solid black"><math>u ~ v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{9}</math></td> | ||
+ | <td><math>1001</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{10}</math></td> | ||
+ | <td><math>1010</math></td> | ||
+ | <td style="border-right:1px solid black"><math>v</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{11}</math></td> | ||
+ | <td><math>1011</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{12}</math></td> | ||
+ | <td><math>1100</math></td> | ||
+ | <td style="border-right:1px solid black"><math>u</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{13}</math></td> | ||
+ | <td><math>1101</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{14}</math></td> | ||
+ | <td><math>1110</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{15}</math></td> | ||
+ | <td><math>1111</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{((~))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" cellpadding="4" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 9.} ~~ \text{Simple Qualifiers of Propositions (Version 2)}</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td width="4%" style="border-bottom:1px solid black" align="right"> | ||
+ | <math>\begin{matrix}u\!:\\v\!:\end{matrix}</math></td> | ||
+ | <td width="6%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{matrix}1100\\1010\end{matrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black; border-right:1px solid black"> | ||
+ | <math>f</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{11} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{10} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{01} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \texttt{(} \ell_{00} \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{No} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{00} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{01} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ \texttt{(} u \texttt{)} | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{10} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ \texttt{(} v \texttt{)} | ||
+ | \end{smallmatrix}</math></td> | ||
+ | <td width="10%" style="border-bottom:1px solid black"> | ||
+ | <math>\begin{smallmatrix} | ||
+ | \ell_{11} | ||
+ | \\ | ||
+ | \mathrm{Some} ~ u | ||
+ | \\ | ||
+ | \mathrm{is} ~ v | ||
+ | \end{smallmatrix}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"><math>f_{0}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>0000</math></td> | ||
+ | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>\texttt{(~)}</math></td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{1}</math></td> | ||
+ | <td><math>0001</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)(} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{2}</math></td> | ||
+ | <td><math>0010</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u\texttt{)} ~ v</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{4}</math></td> | ||
+ | <td><math>0100</math></td> | ||
+ | <td style="border-right:1px solid black"><math>u ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"><math>f_{8}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>1000</math></td> | ||
+ | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>u ~ v</math></td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{3}</math></td> | ||
+ | <td><math>0011</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"><math>f_{12}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>1100</math></td> | ||
+ | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>u</math></td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{6}</math></td> | ||
+ | <td><math>0110</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u \texttt{,} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"><math>f_{9}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>1001</math></td> | ||
+ | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>\texttt{((} u \texttt{,} v \texttt{))}</math></td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{5}</math></td> | ||
+ | <td><math>0101</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"><math>f_{10}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>1010</math></td> | ||
+ | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>v</math></td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{7}</math></td> | ||
+ | <td><math>0111</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u ~ v \texttt{)}</math></td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{11}</math></td> | ||
+ | <td><math>1011</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{(} u ~ \texttt{(} v \texttt{))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{13}</math></td> | ||
+ | <td><math>1101</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{((} u \texttt{)} ~ v \texttt{)}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"><math>f_{14}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>1110</math></td> | ||
+ | <td style="border-bottom:1px solid black; border-right:1px solid black"><math>\texttt{((} u \texttt{)(} v \texttt{))}</math></td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:white; color:black">0</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td> | ||
+ | <td style="border-bottom:1px solid black; background:black; color:white">1</td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>f_{15}</math></td> | ||
+ | <td><math>1111</math></td> | ||
+ | <td style="border-right:1px solid black"><math>\texttt{((~))}</math></td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:white; color:black">0</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td> | ||
+ | <td style="background:black; color:white">1</td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <table align="center" cellpadding="4" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:90%"> | ||
+ | |||
+ | <caption><font size="+2"><math>\text{Table 10.} ~~ \text{Relation of Quantifiers to Higher Order Propositions}</math></font></caption> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Mnemonic}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Category}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Classical~Form}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Alternate~Form}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Symmetric~Form}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Operator}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>\begin{matrix} | ||
+ | \mathrm{E} | ||
+ | \\ | ||
+ | \mathrm{Exclusive} | ||
+ | \end{matrix}</math></td> | ||
+ | <td><math>\begin{matrix} | ||
+ | \mathrm{Universal} | ||
+ | \\ | ||
+ | \mathrm{Negative} | ||
+ | \end{matrix}</math></td> | ||
+ | <td><math>\mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td> </td> | ||
+ | <td><math>\mathrm{No} ~ u ~ \mathrm{is} ~ v</math></td> | ||
+ | <td><math>\texttt{(} \ell_{11} \texttt{)}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"> | ||
+ | <math>\begin{matrix} | ||
+ | \mathrm{A} | ||
+ | \\ | ||
+ | \mathrm{Absolute} | ||
+ | \end{matrix}</math></td> | ||
+ | <td style="border-bottom:1px solid black"> | ||
+ | <math>\begin{matrix} | ||
+ | \mathrm{Universal} | ||
+ | \\ | ||
+ | \mathrm{Affirmative} | ||
+ | \end{matrix}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{All} ~ u ~ \mathrm{is} ~ v</math></td> | ||
+ | <td style="border-bottom:1px solid black"> </td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{No} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\texttt{(} \ell_{10} \texttt{)}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td><math>\mathrm{All} ~ v ~ \mathrm{is} ~ u</math></td> | ||
+ | <td><math>\mathrm{No} ~ v ~ \mathrm{is} ~ \texttt{(} u \texttt{)}</math></td> | ||
+ | <td><math>\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td> | ||
+ | <td><math>\texttt{(} \ell_{01} \texttt{)}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"> </td> | ||
+ | <td style="border-bottom:1px solid black"> </td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{All} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ u</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{No} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ \texttt{(} u \texttt{)}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\texttt{(} \ell_{00} \texttt{)}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td> </td> | ||
+ | <td> </td> | ||
+ | <td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td> </td> | ||
+ | <td><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td><math>\ell_{00}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="border-bottom:1px solid black"> </td> | ||
+ | <td style="border-bottom:1px solid black"> </td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td> | ||
+ | <td style="border-bottom:1px solid black"> </td> | ||
+ | <td style="border-bottom:1px solid black"><math>\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v</math></td> | ||
+ | <td style="border-bottom:1px solid black"><math>\ell_{01}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>\begin{matrix} | ||
+ | \mathrm{O} | ||
+ | \\ | ||
+ | \mathrm{Obtrusive} | ||
+ | \end{matrix}</math></td> | ||
+ | <td><math>\begin{matrix} | ||
+ | \mathrm{Particular} | ||
+ | \\ | ||
+ | \mathrm{Negative} | ||
+ | \end{matrix}</math></td> | ||
+ | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td> </td> | ||
+ | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
+ | <td><math>\ell_{10}</math></td></tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>\begin{matrix} | ||
+ | \mathrm{I} | ||
+ | \\ | ||
+ | \mathrm{Indefinite} | ||
+ | \end{matrix}</math></td> | ||
+ | <td><math>\begin{matrix} | ||
+ | \mathrm{Particular} | ||
+ | \\ | ||
+ | \mathrm{Affirmative} | ||
+ | \end{matrix}</math></td> | ||
+ | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ v</math></td> | ||
+ | <td> </td> | ||
+ | <td><math>\mathrm{Some} ~ u ~ \mathrm{is} ~ v</math></td> | ||
+ | <td><math>\ell_{11}</math></td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ==Inquiry Driven Systems== | ||
+ | |||
+ | ===Table 1. Sign Relation of Interpreter ''A''=== | ||
+ | |||
+ | <pre> | ||
+ | Table 1. Sign Relation of Interpreter A | ||
+ | o---------------o---------------o---------------o | ||
+ | | Object | Sign | Interpretant | | ||
+ | o---------------o---------------o---------------o | ||
+ | | A | "A" | "A" | | ||
+ | | A | "A" | "i" | | ||
+ | | A | "i" | "A" | | ||
+ | | A | "i" | "i" | | ||
+ | | B | "B" | "B" | | ||
+ | | B | "B" | "u" | | ||
+ | | B | "u" | "B" | | ||
+ | | B | "u" | "u" | | ||
+ | o---------------o---------------o---------------o | ||
+ | </pre> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | ||
+ | |+ Table 1. Sign Relation of Interpreter ''A'' | ||
+ | |- style="background:paleturquoise" | ||
+ | ! style="width:20%" | Object | ||
+ | ! style="width:20%" | Sign | ||
+ | ! style="width:20%" | Interpretant | ||
+ | |- | ||
+ | | ''A'' || "A" || "A" | ||
+ | |- | ||
+ | | ''A'' || "A" || "i" | ||
+ | |- | ||
+ | | ''A'' || "i" || "A" | ||
+ | |- | ||
+ | | ''A'' || "i" || "i" | ||
+ | |- | ||
+ | | ''B'' || "B" || "B" | ||
+ | |- | ||
+ | | ''B'' || "B" || "u" | ||
+ | |- | ||
+ | | ''B'' || "u" || "B" | ||
+ | |- | ||
+ | | ''B'' || "u" || "u" | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ===Table 2. Sign Relation of Interpreter ''B''=== | ||
+ | |||
+ | <pre> | ||
+ | Table 2. Sign Relation of Interpreter B | ||
+ | o---------------o---------------o---------------o | ||
+ | | Object | Sign | Interpretant | | ||
+ | o---------------o---------------o---------------o | ||
+ | | A | "A" | "A" | | ||
+ | | A | "A" | "u" | | ||
+ | | A | "u" | "A" | | ||
+ | | A | "u" | "u" | | ||
+ | | B | "B" | "B" | | ||
+ | | B | "B" | "i" | | ||
+ | | B | "i" | "B" | | ||
+ | | B | "i" | "i" | | ||
+ | o---------------o---------------o---------------o | ||
+ | </pre> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | ||
+ | |+ Table 2. Sign Relation of Interpreter ''B'' | ||
+ | |- style="background:paleturquoise" | ||
+ | ! style="width:20%" | Object | ||
+ | ! style="width:20%" | Sign | ||
+ | ! style="width:20%" | Interpretant | ||
+ | |- | ||
+ | | ''A'' || "A" || "A" | ||
+ | |- | ||
+ | | ''A'' || "A" || "u" | ||
+ | |- | ||
+ | | ''A'' || "u" || "A" | ||
+ | |- | ||
+ | | ''A'' || "u" || "u" | ||
+ | |- | ||
+ | | ''B'' || "B" || "B" | ||
+ | |- | ||
+ | | ''B'' || "B" || "i" | ||
+ | |- | ||
+ | | ''B'' || "i" || "B" | ||
+ | |- | ||
+ | | ''B'' || "i" || "i" | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ===Table 3. Semiotic Partition of Interpreter ''A''=== | ||
+ | |||
+ | <pre> | ||
+ | Table 3. A's Semiotic Partition | ||
+ | o-------------------------------o | ||
+ | | "A" "i" | | ||
+ | o-------------------------------o | ||
+ | | "u" "B" | | ||
+ | o-------------------------------o | ||
+ | </pre> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | ||
+ | |+ Table 3. Semiotic Partition of Interpreter ''A'' | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | ||
+ | | width="50%" | "A" | ||
+ | | width="50%" | "i" | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | ||
+ | | width="50%" | "u" | ||
+ | | width="50%" | "B" | ||
+ | |} | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ===Table 4. Semiotic Partition of Interpreter ''B''=== | ||
+ | |||
+ | <pre> | ||
+ | Table 4. B's Semiotic Partition | ||
+ | o---------------o---------------o | ||
+ | | "A" | "i" | | ||
+ | | | | | ||
+ | | "u" | "B" | | ||
+ | o---------------o---------------o | ||
+ | </pre> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | ||
+ | |+ Table 4. Semiotic Partition of Interpreter ''B'' | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:50%" | ||
+ | | "A" | ||
+ | |- | ||
+ | | "u" | ||
+ | |} | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:50%" | ||
+ | | "i" | ||
+ | |- | ||
+ | | "B" | ||
+ | |} | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ===Table 5. Alignments of Capacities=== | ||
+ | |||
+ | <pre> | ||
+ | Table 5. Alignments of Capacities | ||
+ | o-------------------o-----------------------------o | ||
+ | | Formal | Formative | | ||
+ | o-------------------o-----------------------------o | ||
+ | | Objective | Instrumental | | ||
+ | | Passive | Active | | ||
+ | o-------------------o--------------o--------------o | ||
+ | | Afforded | Possessed | Exercised | | ||
+ | o-------------------o--------------o--------------o | ||
+ | </pre> | ||
+ | |||
+ | ===Table 6. Alignments of Capacities in Aristotle=== | ||
+ | |||
+ | <pre> | ||
+ | Table 6. Alignments of Capacities in Aristotle | ||
+ | o-------------------o-----------------------------o | ||
+ | | Matter | Form | | ||
+ | o-------------------o-----------------------------o | ||
+ | | Potentiality | Actuality | | ||
+ | | Receptivity | Possession | Exercise | | ||
+ | | Life | Sleep | Waking | | ||
+ | | Wax | Impression | | ||
+ | | Axe | Edge | Cutting | | ||
+ | | Eye | Vision | Seeing | | ||
+ | | Body | Soul | | ||
+ | o-------------------o-----------------------------o | ||
+ | | Ship? | Sailor? | | ||
+ | o-------------------o-----------------------------o | ||
+ | </pre> | ||
+ | |||
+ | ===Table 7. Synthesis of Alignments=== | ||
+ | |||
+ | <pre> | ||
+ | Table 7. Synthesis of Alignments | ||
+ | o-------------------o-----------------------------o | ||
+ | | Formal | Formative | | ||
+ | o-------------------o-----------------------------o | ||
+ | | Objective | Instrumental | | ||
+ | | Passive | Active | | ||
+ | | Afforded | Possessed | Exercised | | ||
+ | | To Hold | To Have | To Use | | ||
+ | | Receptivity | Possession | Exercise | | ||
+ | | Potentiality | Actuality | | ||
+ | | Matter | Form | | ||
+ | o-------------------o-----------------------------o | ||
+ | </pre> | ||
+ | |||
+ | ===Table 8. Boolean Product=== | ||
+ | |||
+ | <pre> | ||
+ | Table 8. Boolean Product | ||
+ | o---------o---------o---------o | ||
+ | | %*% % %0% | %1% | | ||
+ | o=========o=========o=========o | ||
+ | | %0% % %0% | %0% | | ||
+ | o---------o---------o---------o | ||
+ | | %1% % %0% | %1% | | ||
+ | o---------o---------o---------o | ||
+ | </pre> | ||
+ | |||
+ | ===Table 9. Boolean Sum=== | ||
+ | |||
+ | <pre> | ||
+ | Table 9. Boolean Sum | ||
+ | o---------o---------o---------o | ||
+ | | %+% % %0% | %1% | | ||
+ | o=========o=========o=========o | ||
+ | | %0% % %0% | %1% | | ||
+ | o---------o---------o---------o | ||
+ | | %1% % %1% | %0% | | ||
+ | o---------o---------o---------o | ||
+ | </pre> | ||
+ | |||
+ | ==Logical Tables== | ||
+ | |||
+ | ===Table Templates=== | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | ||
+ | |+ Table 1. Two Variable Template | ||
+ | |- style="background:paleturquoise" | ||
+ | | | ||
+ | {| align="right" style="background:paleturquoise; text-align:right" | ||
+ | | u : | ||
+ | |- | ||
+ | | v : | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | 1 1 0 0 | ||
+ | |- | ||
+ | | 1 0 1 0 | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | f | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | f | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | f | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>0</sub> | ||
+ | |- | ||
+ | | f<sub>1</sub> | ||
+ | |- | ||
+ | | f<sub>2</sub> | ||
+ | |- | ||
+ | | f<sub>3</sub> | ||
+ | |- | ||
+ | | f<sub>4</sub> | ||
+ | |- | ||
+ | | f<sub>5</sub> | ||
+ | |- | ||
+ | | f<sub>6</sub> | ||
+ | |- | ||
+ | | f<sub>7</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | 0 0 0 0 | ||
+ | |- | ||
+ | | 0 0 0 1 | ||
+ | |- | ||
+ | | 0 0 1 0 | ||
+ | |- | ||
+ | | 0 0 1 1 | ||
+ | |- | ||
+ | | 0 1 0 0 | ||
+ | |- | ||
+ | | 0 1 0 1 | ||
+ | |- | ||
+ | | 0 1 1 0 | ||
+ | |- | ||
+ | | 0 1 1 1 | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>0</sub> | ||
+ | |- | ||
+ | | f<sub>1</sub> | ||
+ | |- | ||
+ | | f<sub>2</sub> | ||
+ | |- | ||
+ | | f<sub>3</sub> | ||
+ | |- | ||
+ | | f<sub>4</sub> | ||
+ | |- | ||
+ | | f<sub>5</sub> | ||
+ | |- | ||
+ | | f<sub>6</sub> | ||
+ | |- | ||
+ | | f<sub>7</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>0</sub> | ||
+ | |- | ||
+ | | f<sub>1</sub> | ||
+ | |- | ||
+ | | f<sub>2</sub> | ||
+ | |- | ||
+ | | f<sub>3</sub> | ||
+ | |- | ||
+ | | f<sub>4</sub> | ||
+ | |- | ||
+ | | f<sub>5</sub> | ||
+ | |- | ||
+ | | f<sub>6</sub> | ||
+ | |- | ||
+ | | f<sub>7</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>0</sub> | ||
+ | |- | ||
+ | | f<sub>1</sub> | ||
+ | |- | ||
+ | | f<sub>2</sub> | ||
+ | |- | ||
+ | | f<sub>3</sub> | ||
+ | |- | ||
+ | | f<sub>4</sub> | ||
+ | |- | ||
+ | | f<sub>5</sub> | ||
+ | |- | ||
+ | | f<sub>6</sub> | ||
+ | |- | ||
+ | | f<sub>7</sub> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>8</sub> | ||
+ | |- | ||
+ | | f<sub>9</sub> | ||
+ | |- | ||
+ | | f<sub>10</sub> | ||
+ | |- | ||
+ | | f<sub>11</sub> | ||
+ | |- | ||
+ | | f<sub>12</sub> | ||
+ | |- | ||
+ | | f<sub>13</sub> | ||
+ | |- | ||
+ | | f<sub>14</sub> | ||
+ | |- | ||
+ | | f<sub>15</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | 1 0 0 0 | ||
+ | |- | ||
+ | | 1 0 0 1 | ||
+ | |- | ||
+ | | 1 0 1 0 | ||
+ | |- | ||
+ | | 1 0 1 1 | ||
+ | |- | ||
+ | | 1 1 0 0 | ||
+ | |- | ||
+ | | 1 1 0 1 | ||
+ | |- | ||
+ | | 1 1 1 0 | ||
+ | |- | ||
+ | | 1 1 1 1 | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>8</sub> | ||
+ | |- | ||
+ | | f<sub>9</sub> | ||
+ | |- | ||
+ | | f<sub>10</sub> | ||
+ | |- | ||
+ | | f<sub>11</sub> | ||
+ | |- | ||
+ | | f<sub>12</sub> | ||
+ | |- | ||
+ | | f<sub>13</sub> | ||
+ | |- | ||
+ | | f<sub>14</sub> | ||
+ | |- | ||
+ | | f<sub>15</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>8</sub> | ||
+ | |- | ||
+ | | f<sub>9</sub> | ||
+ | |- | ||
+ | | f<sub>10</sub> | ||
+ | |- | ||
+ | | f<sub>11</sub> | ||
+ | |- | ||
+ | | f<sub>12</sub> | ||
+ | |- | ||
+ | | f<sub>13</sub> | ||
+ | |- | ||
+ | | f<sub>14</sub> | ||
+ | |- | ||
+ | | f<sub>15</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>8</sub> | ||
+ | |- | ||
+ | | f<sub>9</sub> | ||
+ | |- | ||
+ | | f<sub>10</sub> | ||
+ | |- | ||
+ | | f<sub>11</sub> | ||
+ | |- | ||
+ | | f<sub>12</sub> | ||
+ | |- | ||
+ | | f<sub>13</sub> | ||
+ | |- | ||
+ | | f<sub>14</sub> | ||
+ | |- | ||
+ | | f<sub>15</sub> | ||
+ | |} | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | <font face="courier new"> | ||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | ||
+ | |+ Table 2. Two Variable Template | ||
+ | |- style="background:paleturquoise" | ||
+ | | | ||
+ | {| align="right" style="background:paleturquoise; text-align:right" | ||
+ | | u : | ||
+ | |- | ||
+ | | v : | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | 1100 | ||
+ | |- | ||
+ | | 1010 | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | f | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | f | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | | | ||
+ | {| style="background:paleturquoise" | ||
+ | | f | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>0</sub> | ||
+ | |- | ||
+ | | f<sub>1</sub> | ||
+ | |- | ||
+ | | f<sub>2</sub> | ||
+ | |- | ||
+ | | f<sub>3</sub> | ||
+ | |- | ||
+ | | f<sub>4</sub> | ||
+ | |- | ||
+ | | f<sub>5</sub> | ||
+ | |- | ||
+ | | f<sub>6</sub> | ||
+ | |- | ||
+ | | f<sub>7</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | 0000 | ||
+ | |- | ||
+ | | 0001 | ||
+ | |- | ||
+ | | 0010 | ||
+ | |- | ||
+ | | 0011 | ||
+ | |- | ||
+ | | 0100 | ||
+ | |- | ||
+ | | 0101 | ||
+ | |- | ||
+ | | 0110 | ||
+ | |- | ||
+ | | 0111 | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | () | ||
+ | |- | ||
+ | | (u)(v) | ||
+ | |- | ||
+ | | (u) v | ||
+ | |- | ||
+ | | (u) | ||
+ | |- | ||
+ | | u (v) | ||
+ | |- | ||
+ | | (v) | ||
+ | |- | ||
+ | | (u, v) | ||
+ | |- | ||
+ | | (u v) | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>0</sub> | ||
+ | |- | ||
+ | | f<sub>1</sub> | ||
+ | |- | ||
+ | | f<sub>2</sub> | ||
+ | |- | ||
+ | | f<sub>3</sub> | ||
+ | |- | ||
+ | | f<sub>4</sub> | ||
+ | |- | ||
+ | | f<sub>5</sub> | ||
+ | |- | ||
+ | | f<sub>6</sub> | ||
+ | |- | ||
+ | | f<sub>7</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>0</sub> | ||
+ | |- | ||
+ | | f<sub>1</sub> | ||
+ | |- | ||
+ | | f<sub>2</sub> | ||
+ | |- | ||
+ | | f<sub>3</sub> | ||
+ | |- | ||
+ | | f<sub>4</sub> | ||
+ | |- | ||
+ | | f<sub>5</sub> | ||
+ | |- | ||
+ | | f<sub>6</sub> | ||
+ | |- | ||
+ | | f<sub>7</sub> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>8</sub> | ||
+ | |- | ||
+ | | f<sub>9</sub> | ||
+ | |- | ||
+ | | f<sub>10</sub> | ||
+ | |- | ||
+ | | f<sub>11</sub> | ||
+ | |- | ||
+ | | f<sub>12</sub> | ||
+ | |- | ||
+ | | f<sub>13</sub> | ||
+ | |- | ||
+ | | f<sub>14</sub> | ||
+ | |- | ||
+ | | f<sub>15</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | 1000 | ||
+ | |- | ||
+ | | 1001 | ||
+ | |- | ||
+ | | 1010 | ||
+ | |- | ||
+ | | 1011 | ||
+ | |- | ||
+ | | 1100 | ||
+ | |- | ||
+ | | 1101 | ||
+ | |- | ||
+ | | 1110 | ||
+ | |- | ||
+ | | 1111 | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | u v | ||
+ | |- | ||
+ | | ((u, v)) | ||
+ | |- | ||
+ | | v | ||
+ | |- | ||
+ | | (u (v)) | ||
+ | |- | ||
+ | | u | ||
+ | |- | ||
+ | | ((u) v) | ||
+ | |- | ||
+ | | ((u)(v)) | ||
+ | |- | ||
+ | | (()) | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>8</sub> | ||
+ | |- | ||
+ | | f<sub>9</sub> | ||
+ | |- | ||
+ | | f<sub>10</sub> | ||
+ | |- | ||
+ | | f<sub>11</sub> | ||
+ | |- | ||
+ | | f<sub>12</sub> | ||
+ | |- | ||
+ | | f<sub>13</sub> | ||
+ | |- | ||
+ | | f<sub>14</sub> | ||
+ | |- | ||
+ | | f<sub>15</sub> | ||
+ | |} | ||
+ | | | ||
+ | {| cellpadding="2" style="background:lightcyan" | ||
+ | | f<sub>8</sub> | ||
+ | |- | ||
+ | | f<sub>9</sub> | ||
+ | |- | ||
+ | | f<sub>10</sub> | ||
+ | |- | ||
+ | | f<sub>11</sub> | ||
+ | |- | ||
+ | | f<sub>12</sub> | ||
+ | |- | ||
+ | | f<sub>13</sub> | ||
+ | |- | ||
+ | | f<sub>14</sub> | ||
+ | |- | ||
+ | | f<sub>15</sub> | ||
+ | |} | ||
+ | |} | ||
+ | </font><br> | ||
+ | |||
+ | ===Higher Order Propositions=== | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 7. Higher Order Propositions (n = 1)''' | ||
+ | |- style="background:paleturquoise" | ||
+ | | \ ''x'' || 1 0 || ''F'' | ||
+ | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
+ | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
+ | |- style="background:paleturquoise" | ||
+ | | ''F'' \ || || | ||
+ | |00||01||02||03||04||05||06||07||08||09||10||11||12||13||14||15 | ||
+ | |- | ||
+ | | ''F<sub>0</sub> || 0 0 || 0 ||0||1||0||1||0||1||0||1||0||1||0||1||0||1||0||1 | ||
+ | |- | ||
+ | | ''F<sub>1</sub> || 0 1 || (x) ||0||0||1||1||0||0||1||1||0||0||1||1||0||0||1||1 | ||
+ | |- | ||
+ | | ''F<sub>2</sub> || 1 0 || x ||0||0||0||0||1||1||1||1||0||0||0||0||1||1||1||1 | ||
+ | |- | ||
+ | | ''F<sub>3</sub> || 1 1 || 1 ||0||0||0||0||0||0||0||0||1||1||1||1||1||1||1||1 | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 8. Interpretive Categories for Higher Order Propositions (n = 1)''' | ||
+ | |- style="background:paleturquoise" | ||
+ | |Measure||Happening||Exactness||Existence||Linearity||Uniformity||Information | ||
+ | |- | ||
+ | |''m''<sub>0</sub>||nothing happens|| || || || || | ||
+ | |- | ||
+ | |''m''<sub>1</sub>|| ||just false||nothing exists|| || || | ||
+ | |- | ||
+ | |''m''<sub>2</sub>|| ||just not x|| || || || | ||
+ | |- | ||
+ | |''m''<sub>3</sub>|| || ||nothing is x|| || || | ||
+ | |- | ||
+ | |''m''<sub>4</sub>|| ||just x|| || || || | ||
+ | |- | ||
+ | |''m''<sub>5</sub>|| || ||everything is x||F is linear|| || | ||
+ | |- | ||
+ | |''m''<sub>6</sub>|| || || || ||F is not uniform||F is informed | ||
+ | |- | ||
+ | |''m''<sub>7</sub>|| ||not just true|| || || || | ||
+ | |- | ||
+ | |''m''<sub>8</sub>|| ||just true|| || || || | ||
+ | |- | ||
+ | |''m''<sub>9</sub>|| || || || ||F is uniform||F is not informed | ||
+ | |- | ||
+ | |''m''<sub>10</sub>|| || ||something is not x||F is not linear|| || | ||
+ | |- | ||
+ | |''m''<sub>11</sub>|| ||not just x|| || || || | ||
+ | |- | ||
+ | |''m''<sub>12</sub>|| || ||something is x|| || || | ||
+ | |- | ||
+ | |''m''<sub>13</sub>|| ||not just not x|| || || || | ||
+ | |- | ||
+ | |''m''<sub>14</sub>|| ||not just false||something exists|| || || | ||
+ | |- | ||
+ | |''m''<sub>15</sub>||anything happens|| || || || || | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 9. Higher Order Propositions (n = 2)''' | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''x'' : || 1100 || ''f'' | ||
+ | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
+ | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
+ | |''m''||''m''||''m''||''m''||''m''||''m''||''m''||''m'' | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''y'' : || 1010 || | ||
+ | |0||1||2||3||4||5||6||7||8||9||10||11||12 | ||
+ | |13||14||15||16||17||18||19||20||21||22||23 | ||
+ | |- | ||
+ | | ''f<sub>0</sub> || 0000 || ( ) | ||
+ | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | ||
+ | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | ||
+ | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | ||
+ | |- | ||
+ | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
+ | | || || 1 || 1 || 0 || 0 || 1 || 1 | ||
+ | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | ||
+ | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>2</sub> || 0010 || (x) y | ||
+ | | || || || || 1 || 1 || 1 || 1 | ||
+ | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | ||
+ | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>3</sub> || 0011 || (x) | ||
+ | | || || || || || || || | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | ||
+ | |- | ||
+ | | ''f<sub>4</sub> || 0100 || x (y) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>5</sub> || 0101 || (y) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>6</sub> || 0110 || (x, y) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>7</sub> || 0111 || (x y) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>8</sub> || 1000 || x y | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>10</sub> || 1010 || y | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>12</sub> || 1100 || x | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |- | ||
+ | | ''f<sub>15</sub> || 1111 || (( )) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 10. Qualifiers of Implication Ordering: α<sub>''i'' </sub>''f'' = Υ(''f''<sub>''i''</sub> ⇒ ''f'')''' | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''x'' : || 1100 || ''f'' | ||
+ | |α||α||α||α||α||α||α||α | ||
+ | |α||α||α||α||α||α||α||α | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''y'' : || 1010 || | ||
+ | |15||14||13||12||11||10||9||8||7||6||5||4||3||2||1||0 | ||
+ | |- | ||
+ | | ''f<sub>0</sub> || 0000 || ( ) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || 1 | ||
+ | |- | ||
+ | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>2</sub> || 0010 || (x) y | ||
+ | | || || || || || || || | ||
+ | | || || || || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>3</sub> || 0011 || (x) | ||
+ | | || || || || || || || | ||
+ | | || || || || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>4</sub> || 0100 || x (y) | ||
+ | | || || || || || || || | ||
+ | | || || || 1 || || || || 1 | ||
+ | |- | ||
+ | | ''f<sub>5</sub> || 0101 || (y) | ||
+ | | || || || || || || || | ||
+ | | || || 1 || 1 || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>6</sub> || 0110 || (x, y) | ||
+ | | || || || || || || || | ||
+ | | || 1 || || 1 || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>7</sub> || 0111 || (x y) | ||
+ | | || || || || || || || | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>8</sub> || 1000 || x y | ||
+ | | || || || || || || || 1 | ||
+ | | || || || || || || || 1 | ||
+ | |- | ||
+ | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
+ | | || || || || || || 1 || 1 | ||
+ | | || || || || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>10</sub> || 1010 || y | ||
+ | | || || || || || 1 || || 1 | ||
+ | | || || || || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
+ | | || || || || 1 || 1 || 1 || 1 | ||
+ | | || || || || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>12</sub> || 1100 || x | ||
+ | | || || || 1 || || || || 1 | ||
+ | | || || || 1 || || || || 1 | ||
+ | |- | ||
+ | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
+ | | || || 1 || 1 || || || 1 || 1 | ||
+ | | || || 1 || 1 || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
+ | | || 1 || || 1 || || 1 || || 1 | ||
+ | | || 1 || || 1 || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>15</sub> || 1111 || (( )) | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 11. Qualifiers of Implication Ordering: β<sub>''i'' </sub>''f'' = Υ(''f'' ⇒ ''f''<sub>''i''</sub>)''' | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''x'' : || 1100 || ''f'' | ||
+ | |β||β||β||β||β||β||β||β | ||
+ | |β||β||β||β||β||β||β||β | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''y'' : || 1010 || | ||
+ | |0||1||2||3||4||5||6||7||8||9||10||11||12||13||14||15 | ||
+ | |- | ||
+ | | ''f<sub>0</sub> || 0000 || ( ) | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
+ | | || 1 || || 1 || || 1 || || 1 | ||
+ | | || 1 || || 1 || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>2</sub> || 0010 || (x) y | ||
+ | | || || 1 || 1 || || || 1 || 1 | ||
+ | | || || 1 || 1 || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>3</sub> || 0011 || (x) | ||
+ | | || || || 1 || || || || 1 | ||
+ | | || || || 1 || || || || 1 | ||
+ | |- | ||
+ | | ''f<sub>4</sub> || 0100 || x (y) | ||
+ | | || || || || 1 || 1 || 1 || 1 | ||
+ | | || || || || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>5</sub> || 0101 || (y) | ||
+ | | || || || || || 1 || || 1 | ||
+ | | || || || || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>6</sub> || 0110 || (x, y) | ||
+ | | || || || || || || 1 || 1 | ||
+ | | || || || || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>7</sub> || 0111 || (x y) | ||
+ | | || || || || || || || 1 | ||
+ | | || || || || || || || 1 | ||
+ | |- | ||
+ | | ''f<sub>8</sub> || 1000 || x y | ||
+ | | || || || || || || || | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
+ | | || || || || || || || | ||
+ | | || 1 || || 1 || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>10</sub> || 1010 || y | ||
+ | | || || || || || || || | ||
+ | | || || 1 || 1 || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
+ | | || || || || || || || | ||
+ | | || || || 1 || || || || 1 | ||
+ | |- | ||
+ | | ''f<sub>12</sub> || 1100 || x | ||
+ | | || || || || || || || | ||
+ | | || || || || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
+ | | || || || || || || || | ||
+ | | || || || || || 1 || || 1 | ||
+ | |- | ||
+ | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>15</sub> || 1111 || (( )) | ||
+ | | || || || || || || || | ||
+ | | || || || || || || || 1 | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 13. Syllogistic Premisses as Higher Order Indicator Functions''' | ||
+ | | A | ||
+ | | align=left | Universal Affirmative | ||
+ | | align=left | All | ||
+ | | x || is || y | ||
+ | | align=left | Indicator of " x (y)" = 0 | ||
+ | |- | ||
+ | | E | ||
+ | | align=left | Universal Negative | ||
+ | | align=left | All | ||
+ | | x || is || (y) | ||
+ | | align=left | Indicator of " x y " = 0 | ||
+ | |- | ||
+ | | I | ||
+ | | align=left | Particular Affirmative | ||
+ | | align=left | Some | ||
+ | | x || is || y | ||
+ | | align=left | Indicator of " x y " = 1 | ||
+ | |- | ||
+ | | O | ||
+ | | align=left | Particular Negative | ||
+ | | align=left | Some | ||
+ | | x || is || (y) | ||
+ | | align=left | Indicator of " x (y)" = 1 | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 14. Relation of Quantifiers to Higher Order Propositions''' | ||
+ | |- style="background:paleturquoise" | ||
+ | |Mnemonic||Category||Classical Form||Alternate Form||Symmetric Form||Operator | ||
+ | |- | ||
+ | | E<br>Exclusive | ||
+ | | Universal<br>Negative | ||
+ | | align=left | All x is (y) | ||
+ | | align=left | | ||
+ | | align=left | No x is y | ||
+ | | (''L''<sub>11</sub>) | ||
+ | |- | ||
+ | | A<br>Absolute | ||
+ | | Universal<br>Affirmative | ||
+ | | align=left | All x is y | ||
+ | | align=left | | ||
+ | | align=left | No x is (y) | ||
+ | | (''L''<sub>10</sub>) | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | align=left | All y is x | ||
+ | | align=left | No y is (x) | ||
+ | | align=left | No (x) is y | ||
+ | | (''L''<sub>01</sub>) | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | align=left | All (y) is x | ||
+ | | align=left | No (y) is (x) | ||
+ | | align=left | No (x) is (y) | ||
+ | | (''L''<sub>00</sub>) | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | align=left | Some (x) is (y) | ||
+ | | align=left | | ||
+ | | align=left | Some (x) is (y) | ||
+ | | ''L''<sub>00</sub> | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | align=left | Some (x) is y | ||
+ | | align=left | | ||
+ | | align=left | Some (x) is y | ||
+ | | ''L''<sub>01</sub> | ||
+ | |- | ||
+ | | O<br>Obtrusive | ||
+ | | Particular<br>Negative | ||
+ | | align=left | Some x is (y) | ||
+ | | align=left | | ||
+ | | align=left | Some x is (y) | ||
+ | | ''L''<sub>10</sub> | ||
+ | |- | ||
+ | | I<br>Indefinite | ||
+ | | Particular<br>Affirmative | ||
+ | | align=left | Some x is y | ||
+ | | align=left | | ||
+ | | align=left | Some x is y | ||
+ | | ''L''<sub>11</sub> | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 15. Simple Qualifiers of Propositions (n = 2)''' | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''x'' : || 1100 || ''f'' | ||
+ | | (''L''<sub>11</sub>) | ||
+ | | (''L''<sub>10</sub>) | ||
+ | | (''L''<sub>01</sub>) | ||
+ | | (''L''<sub>00</sub>) | ||
+ | | ''L''<sub>00</sub> | ||
+ | | ''L''<sub>01</sub> | ||
+ | | ''L''<sub>10</sub> | ||
+ | | ''L''<sub>11</sub> | ||
+ | |- style="background:paleturquoise" | ||
+ | | align=right | ''y'' : || 1010 || | ||
+ | | align=left | no x <br> is y | ||
+ | | align=left | no x <br> is (y) | ||
+ | | align=left | no (x) <br> is y | ||
+ | | align=left | no (x) <br> is (y) | ||
+ | | align=left | some (x) <br> is (y) | ||
+ | | align=left | some (x) <br> is y | ||
+ | | align=left | some x <br> is (y) | ||
+ | | align=left | some x <br> is y | ||
+ | |- | ||
+ | | ''f<sub>0</sub> || 0000 || ( ) | ||
+ | | 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 | ||
+ | |- | ||
+ | | ''f<sub>1</sub> || 0001 || (x)(y) | ||
+ | | 1 || 1 || 1 || 0 || 1 || 0 || 0 || 0 | ||
+ | |||
+ | |- | ||
+ | | ''f<sub>2</sub> || 0010 || (x) y | ||
+ | | 1 || 1 || 0 || 1 || 0 || 1 || 0 || 0 | ||
+ | |- | ||
+ | | ''f<sub>3</sub> || 0011 || (x) | ||
+ | | 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 | ||
+ | |- | ||
+ | | ''f<sub>4</sub> || 0100 || x (y) | ||
+ | | 1 || 0 || 1 || 1 || 0 || 0 || 1 || 0 | ||
+ | |- | ||
+ | | ''f<sub>5</sub> || 0101 || (y) | ||
+ | | 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 | ||
+ | |- | ||
+ | | ''f<sub>6</sub> || 0110 || (x, y) | ||
+ | | 1 || 0 || 0 || 1 || 0 || 1 || 1 || 0 | ||
+ | |- | ||
+ | | ''f<sub>7</sub> || 0111 || (x y) | ||
+ | | 1 || 0 || 0 || 0 || 1 || 1 || 1 || 0 | ||
+ | |- | ||
+ | | ''f<sub>8</sub> || 1000 || x y | ||
+ | | 0 || 1 || 1 || 1 || 0 || 0 || 0 || 1 | ||
+ | |- | ||
+ | | ''f<sub>9</sub> || 1001 || ((x, y)) | ||
+ | | 0 || 1 || 1 || 0 || 1 || 0 || 0 || 1 | ||
+ | |- | ||
+ | | ''f<sub>10</sub> || 1010 || y | ||
+ | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | ||
+ | |- | ||
+ | | ''f<sub>11</sub> || 1011 || (x (y)) | ||
+ | | 0 || 1 || 0 || 0 || 1 || 1 || 0 || 1 | ||
+ | |- | ||
+ | | ''f<sub>12</sub> || 1100 || x | ||
+ | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>13</sub> || 1101 || ((x) y) | ||
+ | | 0 || 0 || 1 || 0 || 1 || 0 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>14</sub> || 1110 || ((x)(y)) | ||
+ | | 0 || 0 || 0 || 1 || 0 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | ''f<sub>15</sub> || 1111 || (( )) | ||
+ | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | Table 7. Higher Order Propositions (n = 1) | ||
+ | o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o | ||
+ | | \ x | 1 0 | F |m |m |m |m |m |m |m |m |m |m |m |m |m |m |m |m | | ||
+ | | F \ | | |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15 | | ||
+ | o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o | ||
+ | | | | | | | ||
+ | | F_0 | 0 0 | 0 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | | ||
+ | | | | | | | ||
+ | | F_1 | 0 1 | (x) | 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 | | ||
+ | | | | | | | ||
+ | | F_2 | 1 0 | x | 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | F_3 | 1 1 | 1 | 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o | ||
+ | <br> | ||
+ | |||
+ | Table 8. Interpretive Categories for Higher Order Propositions (n = 1) | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | |Measure| Happening| Exactness | Existence | Linearity|Uniformity|Information| | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_0 | nothing | | | | | | | ||
+ | | | happens | | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_1 | | | nothing | | | | | ||
+ | | | | just false | exists | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_2 | | | | | | | | ||
+ | | | | just not x | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_3 | | | nothing | | | | | ||
+ | | | | | is x | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_4 | | | | | | | | ||
+ | | | | just x | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_5 | | | everything | F is | | | | ||
+ | | | | | is x | linear | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_6 | | | | | F is not | F is | | ||
+ | | | | | | | uniform | informed | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_7 | | not | | | | | | ||
+ | | | | just true | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_8 | | | | | | | | ||
+ | | | | just true | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_9 | | | | | F is | F is not | | ||
+ | | | | | | | uniform | informed | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_10 | | | something | F is not | | | | ||
+ | | | | | is not x | linear | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_11 | | not | | | | | | ||
+ | | | | just x | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_12 | | | something | | | | | ||
+ | | | | | is x | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_13 | | not | | | | | | ||
+ | | | | just not x | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_14 | | not | something | | | | | ||
+ | | | | just false | exists | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | | m_15 | anything | | | | | | | ||
+ | | | happens | | | | | | | ||
+ | o-------o----------o------------o------------o----------o----------o-----------o | ||
+ | <br> | ||
+ | |||
+ | Table 9. Higher Order Propositions (n = 2) | ||
+ | o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
+ | | | x | 1100 | f |m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|.| | ||
+ | | | y | 1010 | |0|0|0|0|0|0|0|0|0|0|1|1|1|1|1|1|.| | ||
+ | | f \ | | |0|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|.| | ||
+ | o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
+ | | | | | | | ||
+ | | f_0 | 0000 | () |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | | ||
+ | | | | | | | ||
+ | | f_1 | 0001 | (x)(y) | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 | | ||
+ | | | | | | | ||
+ | | f_2 | 0010 | (x) y | 1 1 1 1 0 0 0 0 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_3 | 0011 | (x) | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_4 | 0100 | x (y) | | | ||
+ | | | | | | | ||
+ | | f_5 | 0101 | (y) | | | ||
+ | | | | | | | ||
+ | | f_6 | 0110 | (x, y) | | | ||
+ | | | | | | | ||
+ | | f_7 | 0111 | (x y) | | | ||
+ | | | | | | | ||
+ | o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
+ | | | | | | | ||
+ | | f_8 | 1000 | x y | | | ||
+ | | | | | | | ||
+ | | f_9 | 1001 | ((x, y)) | | | ||
+ | | | | | | | ||
+ | | f_10 | 1010 | y | | | ||
+ | | | | | | | ||
+ | | f_11 | 1011 | (x (y)) | | | ||
+ | | | | | | | ||
+ | | f_12 | 1100 | x | | | ||
+ | | | | | | | ||
+ | | f_13 | 1101 | ((x) y) | | | ||
+ | | | | | | | ||
+ | | f_14 | 1110 | ((x)(y)) | | | ||
+ | | | | | | | ||
+ | | f_15 | 1111 | (()) | | | ||
+ | | | | | | | ||
+ | o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o | ||
+ | <br> | ||
+ | |||
+ | Table 10. Qualifiers of Implication Ordering: !a!_i f = !Y!(f_i => f) | ||
+ | o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
+ | | | x | 1100 | f |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a | | ||
+ | | | y | 1010 | |1 |1 |1 |1 |1 |1 |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 | | ||
+ | | f \ | | |5 |4 |3 |2 |1 |0 |9 |8 |7 |6 |5 |4 |3 |2 |1 |0 | | ||
+ | o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
+ | | | | | | | ||
+ | | f_0 | 0000 | () | 1 | | ||
+ | | | | | | | ||
+ | | f_1 | 0001 | (x)(y) | 1 1 | | ||
+ | | | | | | | ||
+ | | f_2 | 0010 | (x) y | 1 1 | | ||
+ | | | | | | | ||
+ | | f_3 | 0011 | (x) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_4 | 0100 | x (y) | 1 1 | | ||
+ | | | | | | | ||
+ | | f_5 | 0101 | (y) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_6 | 0110 | (x, y) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_7 | 0111 | (x y) | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_8 | 1000 | x y | 1 1 | | ||
+ | | | | | | | ||
+ | | f_9 | 1001 | ((x, y)) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_10 | 1010 | y | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_11 | 1011 | (x (y)) | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_12 | 1100 | x | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_13 | 1101 | ((x) y) | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_14 | 1110 | ((x)(y)) | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_15 | 1111 | (()) |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
+ | <br> | ||
+ | |||
+ | Table 11. Qualifiers of Implication Ordering: !b!_i f = !Y!(f => f_i) | ||
+ | o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
+ | | | x | 1100 | f |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b | | ||
+ | | | y | 1010 | |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |1 |1 |1 |1 |1 |1 | | ||
+ | | f \ | | |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |0 |1 |2 |3 |4 |5 | | ||
+ | o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
+ | | | | | | | ||
+ | | f_0 | 0000 | () |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_1 | 0001 | (x)(y) | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_2 | 0010 | (x) y | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_3 | 0011 | (x) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_4 | 0100 | x (y) | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_5 | 0101 | (y) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_6 | 0110 | (x, y) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_7 | 0111 | (x y) | 1 1 | | ||
+ | | | | | | | ||
+ | | f_8 | 1000 | x y | 1 1 1 1 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_9 | 1001 | ((x, y)) | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_10 | 1010 | y | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_11 | 1011 | (x (y)) | 1 1 | | ||
+ | | | | | | | ||
+ | | f_12 | 1100 | x | 1 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_13 | 1101 | ((x) y) | 1 1 | | ||
+ | | | | | | | ||
+ | | f_14 | 1110 | ((x)(y)) | 1 1 | | ||
+ | | | | | | | ||
+ | | f_15 | 1111 | (()) | 1 | | ||
+ | | | | | | | ||
+ | o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o | ||
+ | <br> | ||
+ | |||
+ | Table 13. Syllogistic Premisses as Higher Order Indicator Functions | ||
+ | o---o------------------------o-----------------o---------------------------o | ||
+ | | | | | | | ||
+ | | A | Universal Affirmative | All x is y | Indicator of " x (y)" = 0 | | ||
+ | | | | | | | ||
+ | | E | Universal Negative | All x is (y) | Indicator of " x y " = 0 | | ||
+ | | | | | | | ||
+ | | I | Particular Affirmative | Some x is y | Indicator of " x y " = 1 | | ||
+ | | | | | | | ||
+ | | O | Particular Negative | Some x is (y) | Indicator of " x (y)" = 1 | | ||
+ | | | | | | | ||
+ | o---o------------------------o-----------------o---------------------------o | ||
+ | <br> | ||
+ | |||
+ | Table 14. Relation of Quantifiers to Higher Order Propositions | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | Mnemonic | Category | Classical | Alternate | Symmetric | Operator | | ||
+ | | | | Form | Form | Form | | | ||
+ | o============o============o===========o===========o===========o===========o | ||
+ | | E | Universal | All x | | No x | (L_11) | | ||
+ | | Exclusive | Negative | is (y) | | is y | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | A | Universal | All x | | No x | (L_10) | | ||
+ | | Absolute | Affrmtve | is y | | is (y) | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | | | All y | No y | No (x) | (L_01) | | ||
+ | | | | is x | is (x) | is y | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | | | All (y) | No (y) | No (x) | (L_00) | | ||
+ | | | | is x | is (x) | is (y) | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | | | Some (x) | | Some (x) | L_00 | | ||
+ | | | | is (y) | | is (y) | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | | | Some (x) | | Some (x) | L_01 | | ||
+ | | | | is y | | is y | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | O | Particular | Some x | | Some x | L_10 | | ||
+ | | Obtrusive | Negative | is (y) | | is (y) | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | | I | Particular | Some x | | Some x | L_11 | | ||
+ | | Indefinite | Affrmtve | is y | | is y | | | ||
+ | o------------o------------o-----------o-----------o-----------o-----------o | ||
+ | <br> | ||
+ | |||
+ | Table 15. Simple Qualifiers of Propositions (n = 2) | ||
+ | o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o | ||
+ | | | x | 1100 | f |(L11)|(L10)|(L01)|(L00)| L00 | L01 | L10 | L11 | | ||
+ | | | y | 1010 | |no x|no x|no ~x|no ~x|sm ~x|sm ~x|sm x|sm x| | ||
+ | | f \ | | |is y|is ~y|is y|is ~y|is ~y|is y|is ~y|is y| | ||
+ | o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o | ||
+ | | | | | | | ||
+ | | f_0 | 0000 | () | 1 1 1 1 0 0 0 0 | | ||
+ | | | | | | | ||
+ | | f_1 | 0001 | (x)(y) | 1 1 1 0 1 0 0 0 | | ||
+ | | | | | | | ||
+ | | f_2 | 0010 | (x) y | 1 1 0 1 0 1 0 0 | | ||
+ | | | | | | | ||
+ | | f_3 | 0011 | (x) | 1 1 0 0 1 1 0 0 | | ||
+ | | | | | | | ||
+ | | f_4 | 0100 | x (y) | 1 0 1 1 0 0 1 0 | | ||
+ | | | | | | | ||
+ | | f_5 | 0101 | (y) | 1 0 1 0 1 0 1 0 | | ||
+ | | | | | | | ||
+ | | f_6 | 0110 | (x, y) | 1 0 0 1 0 1 1 0 | | ||
+ | | | | | | | ||
+ | | f_7 | 0111 | (x y) | 1 0 0 0 1 1 1 0 | | ||
+ | | | | | | | ||
+ | | f_8 | 1000 | x y | 0 1 1 1 0 0 0 1 | | ||
+ | | | | | | | ||
+ | | f_9 | 1001 | ((x, y)) | 0 1 1 0 1 0 0 1 | | ||
+ | | | | | | | ||
+ | | f_10 | 1010 | y | 0 1 0 1 0 1 0 1 | | ||
+ | | | | | | | ||
+ | | f_11 | 1011 | (x (y)) | 0 1 0 0 1 1 0 1 | | ||
+ | | | | | | | ||
+ | | f_12 | 1100 | x | 0 0 1 1 0 0 1 1 | | ||
+ | | | | | | | ||
+ | | f_13 | 1101 | ((x) y) | 0 0 1 0 1 0 1 1 | | ||
+ | | | | | | | ||
+ | | f_14 | 1110 | ((x)(y)) | 0 0 0 1 0 1 1 1 | | ||
+ | | | | | | | ||
+ | | f_15 | 1111 | (()) | 0 0 0 0 1 1 1 1 | | ||
+ | | | | | | | ||
+ | o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o | ||
+ | <br> | ||
+ | |||
+ | ===[[Zeroth Order Logic]]=== | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 1. Propositional Forms on Two Variables''' | ||
+ | |- style="background:paleturquoise" | ||
+ | ! style="width:15%" | L<sub>1</sub> | ||
+ | ! style="width:15%" | L<sub>2</sub> | ||
+ | ! style="width:15%" | L<sub>3</sub> | ||
+ | ! style="width:15%" | L<sub>4</sub> | ||
+ | ! style="width:15%" | L<sub>5</sub> | ||
+ | ! style="width:15%" | L<sub>6</sub> | ||
+ | |- style="background:paleturquoise" | ||
+ | | | ||
+ | | align="right" | x : | ||
+ | | 1 1 0 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:paleturquoise" | ||
+ | | | ||
+ | | align="right" | y : | ||
+ | | 1 0 1 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 | ||
+ | |- | ||
+ | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y | ||
+ | |- | ||
+ | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y | ||
+ | |- | ||
+ | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x | ||
+ | |- | ||
+ | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y | ||
+ | |- | ||
+ | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y | ||
+ | |- | ||
+ | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y | ||
+ | |- | ||
+ | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y | ||
+ | |- | ||
+ | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y | ||
+ | |- | ||
+ | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y | ||
+ | |- | ||
+ | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y | ||
+ | |- | ||
+ | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y | ||
+ | |- | ||
+ | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x | ||
+ | |- | ||
+ | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y | ||
+ | |- | ||
+ | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y || x ∨ y | ||
+ | |- | ||
+ | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ '''Table 1. Propositional Forms on Two Variables''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | L<sub>1</sub> | ||
+ | ! style="width:15%" | L<sub>2</sub> | ||
+ | ! style="width:15%" | L<sub>3</sub> | ||
+ | ! style="width:15%" | L<sub>4</sub> | ||
+ | ! style="width:15%" | L<sub>5</sub> | ||
+ | ! style="width:15%" | L<sub>6</sub> | ||
+ | |- style="background:aliceblue" | ||
+ | | | ||
+ | | align="right" | x : | ||
+ | | 1 1 0 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:aliceblue" | ||
+ | | | ||
+ | | align="right" | y : | ||
+ | | 1 0 1 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 | ||
+ | |- | ||
+ | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y | ||
+ | |- | ||
+ | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y | ||
+ | |- | ||
+ | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x | ||
+ | |- | ||
+ | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y | ||
+ | |- | ||
+ | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y | ||
+ | |- | ||
+ | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y | ||
+ | |- | ||
+ | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y | ||
+ | |- | ||
+ | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y | ||
+ | |- | ||
+ | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y | ||
+ | |- | ||
+ | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y | ||
+ | |- | ||
+ | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y | ||
+ | |- | ||
+ | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x | ||
+ | |- | ||
+ | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y | ||
+ | |- | ||
+ | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y || x ∨ y | ||
+ | |- | ||
+ | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ===Template Draft=== | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:98%" | ||
+ | |+ '''Propositional Forms on Two Variables''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:14%" | L<sub>1</sub> | ||
+ | ! style="width:14%" | L<sub>2</sub> | ||
+ | ! style="width:14%" | L<sub>3</sub> | ||
+ | ! style="width:14%" | L<sub>4</sub> | ||
+ | ! style="width:14%" | L<sub>5</sub> | ||
+ | ! style="width:14%" | L<sub>6</sub> | ||
+ | ! style="width:14%" | Name | ||
+ | |- style="background:aliceblue" | ||
+ | | | ||
+ | | align="right" | x : | ||
+ | | 1 1 0 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:aliceblue" | ||
+ | | | ||
+ | | align="right" | y : | ||
+ | | 1 0 1 0 | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | f<sub>0</sub> || f<sub>0000</sub> || 0 0 0 0 || ( ) || false || 0 || Falsity | ||
+ | |- | ||
+ | | f<sub>1</sub> || f<sub>0001</sub> || 0 0 0 1 || (x)(y) || neither x nor y || ¬x ∧ ¬y || [[NNOR]] | ||
+ | |- | ||
+ | | f<sub>2</sub> || f<sub>0010</sub> || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y || Insuccede | ||
+ | |- | ||
+ | | f<sub>3</sub> || f<sub>0011</sub> || 0 0 1 1 || (x) || not x || ¬x || Not One | ||
+ | |- | ||
+ | | f<sub>4</sub> || f<sub>0100</sub> || 0 1 0 0 || x (y) || x and not y || x ∧ ¬y || Imprecede | ||
+ | |- | ||
+ | | f<sub>5</sub> || f<sub>0101</sub> || 0 1 0 1 || (y) || not y || ¬y || Not Two | ||
+ | |- | ||
+ | | f<sub>6</sub> || f<sub>0110</sub> || 0 1 1 0 || (x, y) || x not equal to y || x ≠ y || Inequality | ||
+ | |- | ||
+ | | f<sub>7</sub> || f<sub>0111</sub> || 0 1 1 1 || (x y) || not both x and y || ¬x ∨ ¬y || NAND | ||
+ | |- | ||
+ | | f<sub>8</sub> || f<sub>1000</sub> || 1 0 0 0 || x y || x and y || x ∧ y || [[Conjunction]] | ||
+ | |- | ||
+ | | f<sub>9</sub> || f<sub>1001</sub> || 1 0 0 1 || ((x, y)) || x equal to y || x = y || Equality | ||
+ | |- | ||
+ | | f<sub>10</sub> || f<sub>1010</sub> || 1 0 1 0 || y || y || y || Two | ||
+ | |- | ||
+ | | f<sub>11</sub> || f<sub>1011</sub> || 1 0 1 1 || (x (y)) || not x without y || x → y || [[Logical implcation|Implication]] | ||
+ | |- | ||
+ | | f<sub>12</sub> || f<sub>1100</sub> || 1 1 0 0 || x || x || x || One | ||
+ | |- | ||
+ | | f<sub>13</sub> || f<sub>1101</sub> || 1 1 0 1 || ((x) y) || not y without x || x ← y || [[Logical involution|Involution]] | ||
+ | |- | ||
+ | | f<sub>14</sub> || f<sub>1110</sub> || 1 1 1 0 || ((x)(y)) || x or y || x ∨ y || [[Disjunction]] | ||
+ | |- | ||
+ | | f<sub>15</sub> || f<sub>1111</sub> || 1 1 1 1 || (( )) || true || 1 || Tautology | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ===[[Truth Tables]]=== | ||
+ | |||
+ | ====[[Logical negation]]==== | ||
+ | |||
+ | '''Logical negation''' is an [[logical operation|operation]] on one [[logical value]], typically the value of a [[proposition]], that produces a value of ''true'' when its operand is false and a value of ''false'' when its operand is true. | ||
+ | |||
+ | The [[truth table]] of '''NOT p''' (also written as '''~p''' or '''¬p''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:40%" | ||
+ | |+ '''Logical Negation''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:20%" | p | ||
+ | ! style="width:20%" | ¬p | ||
+ | |- | ||
+ | | F || T | ||
+ | |- | ||
+ | | T || F | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; width:40%" | ||
+ | |+ '''Variant Notations''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="text-align:center" | Notation | ||
+ | ! Vocalization | ||
+ | |- | ||
+ | | style="text-align:center" | <math>\bar{p}</math> | ||
+ | | bar ''p'' | ||
+ | |- | ||
+ | | style="text-align:center" | <math>p'\!</math> | ||
+ | | ''p'' prime,<p> ''p'' complement | ||
+ | |- | ||
+ | | style="text-align:center" | <math>!p\!</math> | ||
+ | | bang ''p'' | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | No matter how it is notated or symbolized, the logical negation ¬''p'' is read as "it is not the case that ''p''", or usually more simply as "not ''p''". | ||
+ | |||
+ | * Within a system of [[classical logic]], double negation, that is, the negation of the negation of a proposition ''p'', is [[logically equivalent]] to the initial proposition ''p''. Expressed in symbolic terms, ¬(¬''p'') ⇔ ''p''. | ||
+ | |||
+ | * Within a system of [[intuitionistic logic]], however, ¬¬''p'' is a weaker statement than ''p''. On the other hand, the logical equivalence ¬¬¬''p'' ⇔ ¬''p'' remains valid. | ||
+ | |||
+ | Logical negation can be defined in terms of other logical operations. For example, ~''p'' can be defined as ''p'' → ''F'', where → is [[material implication]] and ''F'' is absolute falsehood. Conversely, one can define ''F'' as ''p'' & ~''p'' for any proposition ''p'', where & is [[logical conjunction]]. The idea here is that any [[contradiction]] is false. While these ideas work in both classical and intuitionistic logic, they don't work in [[Brazilian logic]], where contradictions are not necessarily false. But in classical logic, we get a further identity: ''p'' → ''q'' can be defined as ~''p'' ∨ ''q'', where ∨ is [[logical disjunction]]. | ||
+ | |||
+ | Algebraically, logical negation corresponds to the ''complement'' in a [[Boolean algebra]] (for classical logic) or a [[Heyting algebra]] (for intuitionistic logic). | ||
+ | |||
+ | ====[[Logical conjunction]]==== | ||
+ | |||
+ | '''Logical conjunction''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are true. | ||
+ | |||
+ | The [[truth table]] of '''p AND q''' (also written as '''p ∧ q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
+ | |+ '''Logical Conjunction''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | p | ||
+ | ! style="width:15%" | q | ||
+ | ! style="width:15%" | p ∧ q | ||
+ | |- | ||
+ | | F || F || F | ||
+ | |- | ||
+ | | F || T || F | ||
+ | |- | ||
+ | | T || F || F | ||
+ | |- | ||
+ | | T || T || T | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ====[[Logical disjunction]]==== | ||
+ | |||
+ | '''Logical disjunction''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are false. | ||
+ | |||
+ | The [[truth table]] of '''p OR q''' (also written as '''p ∨ q''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
+ | |+ '''Logical Disjunction''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | p | ||
+ | ! style="width:15%" | q | ||
+ | ! style="width:15%" | p ∨ q | ||
+ | |- | ||
+ | | F || F || F | ||
+ | |- | ||
+ | | F || T || T | ||
+ | |- | ||
+ | | T || F || T | ||
+ | |- | ||
+ | | T || T || T | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ====[[Logical equality]]==== | ||
+ | |||
+ | '''Logical equality''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both operands are false or both operands are true. | ||
+ | |||
+ | The [[truth table]] of '''p EQ q''' (also written as '''p = q''', '''p ↔ q''', or '''p ≡ q''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
+ | |+ '''Logical Equality''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | p | ||
+ | ! style="width:15%" | q | ||
+ | ! style="width:15%" | p = q | ||
+ | |- | ||
+ | | F || F || T | ||
+ | |- | ||
+ | | F || T || F | ||
+ | |- | ||
+ | | T || F || F | ||
+ | |- | ||
+ | | T || T || T | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ====[[Exclusive disjunction]]==== | ||
+ | |||
+ | '''Exclusive disjunction''' is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' just in case exactly one of its operands is true. | ||
+ | |||
+ | The [[truth table]] of '''p XOR q''' (also written as '''p + q''', '''p ⊕ q''', or '''p ≠ q''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
+ | |+ '''Exclusive Disjunction''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | p | ||
+ | ! style="width:15%" | q | ||
+ | ! style="width:15%" | p XOR q | ||
+ | |- | ||
+ | | F || F || F | ||
+ | |- | ||
+ | | F || T || T | ||
+ | |- | ||
+ | | T || F || T | ||
+ | |- | ||
+ | | T || T || F | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | The following equivalents can then be deduced: | ||
+ | |||
+ | : <math>\begin{matrix} | ||
+ | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ | ||
+ | \\ | ||
+ | & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\ | ||
+ | \\ | ||
+ | & = & (p \lor q) & \land & \lnot (p \land q) | ||
+ | \end{matrix}</math> | ||
+ | |||
+ | '''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits is odd. | ||
+ | |||
+ | <pre> | ||
+ | A + B = (A ∧ !B) ∨ (!A ∧ B) | ||
= {(A ∧ !B) ∨ !A} ∧ {(A ∧ !B) ∨ B} | = {(A ∧ !B) ∨ !A} ∧ {(A ∧ !B) ∨ B} | ||
− | = {(A ∨ !A) ∧ (!B ∨ !A)} ∧ {(A ∨ B) ∧ (!B ∨ B)} | + | = {(A ∨ !A) ∧ (!B ∨ !A)} ∧ {(A ∨ B) ∧ (!B ∨ B)} |
− | = (!A ∨ !B) ∧ (A ∨ B) | + | = (!A ∨ !B) ∧ (A ∨ B) |
− | = !(A ∧ B) ∧ (A ∨ B) | + | = !(A ∧ B) ∧ (A ∨ B) |
− | </pre> | + | </pre> |
− | + | ||
− | <pre> | + | <pre> |
− | p + q = (p ∧ !q) ∨ (!p ∧ B) | + | p + q = (p ∧ !q) ∨ (!p ∧ B) |
− | + | ||
− | = {(p ∧ !q) ∨ !p} ∧ {(p ∧ !q) ∨ q} | + | = {(p ∧ !q) ∨ !p} ∧ {(p ∧ !q) ∨ q} |
− | + | ||
− | = {(p ∨ !q) ∧ (!q ∨ !p)} ∧ {(p ∨ q) ∧ (!q ∨ q)} | + | = {(p ∨ !q) ∧ (!q ∨ !p)} ∧ {(p ∨ q) ∧ (!q ∨ q)} |
− | + | ||
− | = (!p ∨ !q) ∧ (p ∨ q) | + | = (!p ∨ !q) ∧ (p ∨ q) |
− | + | ||
− | = !(p ∧ q) ∧ (p ∨ q) | + | = !(p ∧ q) ∧ (p ∨ q) |
− | </pre> | + | </pre> |
− | + | ||
− | <pre> | + | <pre> |
− | p + q = (p ∧ ~q) ∨ (~p ∧ q) | + | p + q = (p ∧ ~q) ∨ (~p ∧ q) |
− | + | ||
− | = ((p ∧ ~q) ∨ ~p) ∧ ((p ∧ ~q) ∨ q) | + | = ((p ∧ ~q) ∨ ~p) ∧ ((p ∧ ~q) ∨ q) |
− | + | ||
− | = ((p ∨ ~q) ∧ (~q ∨ ~p)) ∧ ((p ∨ q) ∧ (~q ∨ q)) | + | = ((p ∨ ~q) ∧ (~q ∨ ~p)) ∧ ((p ∨ q) ∧ (~q ∨ q)) |
− | + | ||
− | = (~p ∨ ~q) ∧ (p ∨ q) | + | = (~p ∨ ~q) ∧ (p ∨ q) |
− | + | ||
− | = ~(p ∧ q) ∧ (p ∨ q) | + | = ~(p ∧ q) ∧ (p ∨ q) |
− | </pre> | + | </pre> |
− | + | ||
− | : <math>\begin{matrix} | + | : <math>\begin{matrix} |
− | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ | + | p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\ |
− | & = & ((p \land \lnot q) \lor \lnot p) & \and & ((p \land \lnot q) \lor q) \\ | + | & = & ((p \land \lnot q) \lor \lnot p) & \and & ((p \land \lnot q) \lor q) \\ |
− | & = & ((p \lor \lnot q) \land (\lnot q \lor \lnot p)) & \land & ((p \lor q) \land (\lnot q \lor q)) \\ | + | & = & ((p \lor \lnot q) \land (\lnot q \lor \lnot p)) & \land & ((p \lor q) \land (\lnot q \lor q)) \\ |
− | & = & (\lnot p \lor \lnot q) & \land & (p \lor q) \\ | + | & = & (\lnot p \lor \lnot q) & \land & (p \lor q) \\ |
− | & = & \lnot (p \land q) & \land & (p \lor q) | + | & = & \lnot (p \land q) & \land & (p \lor q) |
+ | \end{matrix}</math> | ||
+ | |||
+ | ====[[Logical implication]]==== | ||
+ | |||
+ | The '''material conditional''' and '''logical implication''' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false. | ||
+ | |||
+ | The [[truth table]] associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
+ | |+ '''Logical Implication''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | p | ||
+ | ! style="width:15%" | q | ||
+ | ! style="width:15%" | p ⇒ q | ||
+ | |- | ||
+ | | F || F || T | ||
+ | |- | ||
+ | | F || T || T | ||
+ | |- | ||
+ | | T || F || F | ||
+ | |- | ||
+ | | T || T || T | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ====[[Logical NAND]]==== | ||
+ | |||
+ | The '''NAND operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true. In other words, it produces a value of ''true'' if and only if at least one of its operands is false. | ||
+ | |||
+ | The [[truth table]] of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
+ | |+ '''Logical NAND''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | p | ||
+ | ! style="width:15%" | q | ||
+ | ! style="width:15%" | p ↑ q | ||
+ | |- | ||
+ | | F || F || T | ||
+ | |- | ||
+ | | F || T || T | ||
+ | |- | ||
+ | | T || F || T | ||
+ | |- | ||
+ | | T || T || F | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ====[[Logical NNOR]]==== | ||
+ | |||
+ | The '''NNOR operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false. In other words, it produces a value of ''false'' if and only if at least one of its operands is true. | ||
+ | |||
+ | The [[truth table]] of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows: | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%" | ||
+ | |+ '''Logical NOR''' | ||
+ | |- style="background:aliceblue" | ||
+ | ! style="width:15%" | p | ||
+ | ! style="width:15%" | q | ||
+ | ! style="width:15%" | p ↓ q | ||
+ | |- | ||
+ | | F || F || T | ||
+ | |- | ||
+ | | F || T || F | ||
+ | |- | ||
+ | | T || F || F | ||
+ | |- | ||
+ | | T || T || F | ||
+ | |} | ||
+ | <br> | ||
+ | |||
+ | ==Relational Tables== | ||
+ | |||
+ | ===Factorization=== | ||
+ | |||
+ | {| align="center" style="text-align:center; width:60%" | ||
+ | | | ||
+ | {| align="center" style="text-align:center; width:100%" | ||
+ | | <math>\text{Table 7. Plural Denotation}\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:100%" | ||
+ | |- style="background:#f0f0ff" | ||
+ | | width="33%" | <math>\text{Object}\!</math> | ||
+ | | width="33%" | <math>\text{Sign}\!</math> | ||
+ | | width="33%" | <math>\text{Interpretant}\!</math> | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | o_1 \\ o_2 \\ o_3 \\ \ldots \\ o_k \\ \ldots | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | s \\ s \\ s \\ \ldots \\ s \\ \ldots | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots | ||
+ | \end{matrix}</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" style="text-align:center; width:60%" | ||
+ | | | ||
+ | {| align="center" style="text-align:center; width:100%" | ||
+ | | <math>\text{Table 8. Sign Relation}~ L</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:100%" | ||
+ | |- style="background:#f0f0ff" | ||
+ | | width="33%" | <math>\text{Object}\!</math> | ||
+ | | width="33%" | <math>\text{Sign}\!</math> | ||
+ | | width="33%" | <math>\text{Interpretant}\!</math> | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | o_1 \\ o_2 \\ o_3 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | s \\ s \\ s | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \ldots \\ \ldots \\ \ldots | ||
\end{matrix}</math> | \end{matrix}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
− | |||
− | |||
− | |||
===Sign Relations=== | ===Sign Relations=== |
Latest revision as of 03:22, 26 April 2012
Cactus Language
Ascii Tables
o-------------------o | | | @ | | | o-------------------o | | | o | | | | | @ | | | o-------------------o | | | a | | @ | | | o-------------------o | | | a | | o | | | | | @ | | | o-------------------o | | | a b c | | @ | | | o-------------------o | | | a b c | | o o o | | \|/ | | o | | | | | @ | | | o-------------------o | | | a b | | o---o | | | | | @ | | | o-------------------o | | | a b | | o---o | | \ / | | @ | | | o-------------------o | | | a b | | o---o | | \ / | | o | | | | | @ | | | o-------------------o | | | a b c | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o | | | a b c | | o o o | | | | | | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o | | | b c | | o o | | a | | | | o--o--o | | \ / | | \ / | | @ | | | o-------------------o |
Table 13. The Existential Interpretation o----o-------------------o-------------------o-------------------o | Ex | Cactus Graph | Cactus Expression | Existential | | | | | Interpretation | o----o-------------------o-------------------o-------------------o | | | | | | 1 | @ | " " | true. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | o | | | | | | | | | | 2 | @ | ( ) | untrue. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | 3 | @ | a | a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | | | | | | | | | 4 | @ | (a) | not a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | 5 | @ | a b c | a and b and c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | \|/ | | | | | o | | | | | | | | | | 6 | @ | ((a)(b)(c)) | a or b or c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | a implies b. | | | a b | | | | | o---o | | if a then b. | | | | | | | | 7 | @ | ( a (b)) | no a sans b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | a exclusive-or b. | | | \ / | | | | 8 | @ | ( a , b ) | a not equal to b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | | | | \ / | | | | | o | | a if & only if b. | | | | | | | | 9 | @ | (( a , b )) | a equates with b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | just one false | | 10 | @ | ( a , b , c ) | out of a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | | | | | | | | | o--o--o | | | | | \ / | | | | | \ / | | just one true | | 11 | @ | ((a),(b),(c)) | among a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | genus a over | | | b c | | species b, c. | | | o o | | | | | a | | | | partition a | | | o--o--o | | among b & c. | | | \ / | | | | | \ / | | whole pie a: | | 12 | @ | ( a ,(b),(c)) | slices b, c. | | | | | | o----o-------------------o-------------------o-------------------o |
Table 14. The Entitative Interpretation o----o-------------------o-------------------o-------------------o | En | Cactus Graph | Cactus Expression | Entitative | | | | | Interpretation | o----o-------------------o-------------------o-------------------o | | | | | | 1 | @ | " " | untrue. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | o | | | | | | | | | | 2 | @ | ( ) | true. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | 3 | @ | a | a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | | | | | | | | | 4 | @ | (a) | not a. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | 5 | @ | a b c | a or b or c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o o o | | | | | \|/ | | | | | o | | | | | | | | | | 6 | @ | ((a)(b)(c)) | a and b and c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | | | a implies b. | | | | | | | | o a | | if a then b. | | | | | | | | 7 | @ b | (a) b | not a, or b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | a if & only if b. | | | \ / | | | | 8 | @ | ( a , b ) | a equates with b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b | | | | | o---o | | | | | \ / | | | | | o | | a exclusive-or b. | | | | | | | | 9 | @ | (( a , b )) | a not equal to b. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | not just one true | | 10 | @ | ( a , b , c ) | out of a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a b c | | | | | o--o--o | | | | | \ / | | | | | \ / | | | | | o | | | | | | | | just one true | | 11 | @ | (( a , b , c )) | among a, b, c. | | | | | | o----o-------------------o-------------------o-------------------o | | | | | | | a | | | | | o | | genus a over | | | | b c | | species b, c. | | | o--o--o | | | | | \ / | | partition a | | | \ / | | among b & c. | | | o | | | | | | | | whole pie a: | | 12 | @ | (((a), b , c )) | slices b, c. | | | | | | o----o-------------------o-------------------o-------------------o |
Table 15. Existential & Entitative Interpretations of Cactus Structures o-----------------o-----------------o-----------------o-----------------o | Cactus Graph | Cactus String | Existential | Entitative | | | | Interpretation | Interpretation | o-----------------o-----------------o-----------------o-----------------o | | | | | | @ | " " | true | false | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | o | | | | | | | | | | | @ | ( ) | false | true | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | C_1 ... C_k | | | | | @ | C_1 ... C_k | C_1 & ... & C_k | C_1 v ... v C_k | | | | | | o-----------------o-----------------o-----------------o-----------------o | | | | | | C_1 C_2 C_k | | Just one | Not just one | | o---o-...-o | | | | | \ / | | of the C_j, | of the C_j, | | \ / | | | | | \ / | | j = 1 to k, | j = 1 to k, | | \ / | | | | | @ | (C_1, ..., C_k) | is not true. | is true. | | | | | | o-----------------o-----------------o-----------------o-----------------o |
Wiki TeX Tables
|- |
\(\text{Object}\!\) | \(\text{Sign}\!\) | \(\text{Interpretant}\!\) |
\(\begin{matrix} o_1 \\ o_2 \\ o_3 \\ \ldots \\ o_k \\ \ldots \end{matrix}\) |
\(\begin{matrix} s \\ s \\ s \\ \ldots \\ s \\ \ldots \end{matrix}\) |
\(\begin{matrix} \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \end{matrix}\) |
|}
| ||||||
|
Sign Relations
O | = | Object Domain | |
S | = | Sign Domain | |
I | = | Interpretant Domain |
O | = | {Ann, Bob} | = | {A, B} | |
S | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} | |
I | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
Triadic Relations
Algebraic Examples
X | Y | Z |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
X | Y | Z |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Semiotic Examples
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
Dyadic Projections
LOS | = | projOS(L) | = | { (o, s) ∈ O × S : (o, s, i) ∈ L for some i ∈ I } | |
LSO | = | projSO(L) | = | { (s, o) ∈ S × O : (o, s, i) ∈ L for some i ∈ I } | |
LIS | = | projIS(L) | = | { (i, s) ∈ I × S : (o, s, i) ∈ L for some o ∈ O } | |
LSI | = | projSI(L) | = | { (s, i) ∈ S × I : (o, s, i) ∈ L for some o ∈ O } | |
LOI | = | projOI(L) | = | { (o, i) ∈ O × I : (o, s, i) ∈ L for some s ∈ S } | |
LIO | = | projIO(L) | = | { (i, o) ∈ I × O : (o, s, i) ∈ L for some s ∈ S } |
Method 1 : Subtitles as Captions
|
|
|
|
|
|
Method 2 : Subtitles as Top Rows
projOS(LA)
|
projOS(LB)
|
projSI(LA)
|
projSI(LB)
|
projOI(LA)
|
projOI(LB)
|
Relation Reduction
Method 1 : Subtitles as Captions
X | Y | Z |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
X | Y | Z |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
|
|
|
|
|
|
projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
|
|
|
|
|
|
projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) |
Method 2 : Subtitles as Top Rows
X | Y | Z |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
X | Y | Z |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
projXY(L0)
|
projXZ(L0)
|
projYZ(L0)
|
projXY(L1)
|
projXZ(L1)
|
projYZ(L1)
|
projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "i" |
A | "i" | "A" |
A | "i" | "i" |
B | "B" | "B" |
B | "B" | "u" |
B | "u" | "B" |
B | "u" | "u" |
Object | Sign | Interpretant |
---|---|---|
A | "A" | "A" |
A | "A" | "u" |
A | "u" | "A" |
A | "u" | "u" |
B | "B" | "B" |
B | "B" | "i" |
B | "i" | "B" |
B | "i" | "i" |
projXY(LA)
|
projXZ(LA)
|
projYZ(LA)
|
projXY(LB)
|
projXZ(LB)
|
projYZ(LB)
|
projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) |
Formatted Text Display
- So in a triadic fact, say, the example
A gives B to C |
- we make no distinction in the ordinary logic of relations between the subject nominative, the direct object, and the indirect object. We say that the proposition has three logical subjects. We regard it as a mere affair of English grammar that there are six ways of expressing this:
A gives B to C | A benefits C with B |
B enriches C at expense of A | C receives B from A |
C thanks A for B | B leaves A for C |
- These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).
Work Area
x0 | x1 | 2f0 | 2f1 | 2f2 | 2f3 | 2f4 | 2f5 | 2f6 | 2f7 | 2f8 | 2f9 | 2f10 | 2f11 | 2f12 | 2f13 | 2f14 | 2f15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Draft 1
|
|
|
Draft 2
|
|
|
Inquiry and Analogy
Test Patterns
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
Table 10
\(x\): | 1 0 | \(f\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) |
\(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(x:\) | 1 0 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) |
\(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Table 11
Measure | Happening | Exactness | Existence | Linearity | Uniformity | Information |
\(m_0\!\) | Nothing happens | |||||
\(m_1\!\) | Just false | Nothing exists | ||||
\(m_2\!\) | Just not \(x\!\) | |||||
\(m_3\!\) | Nothing is \(x\!\) | |||||
\(m_4\!\) | Just \(x\!\) | |||||
\(m_5\!\) | Everything is \(x\!\) | \(f\!\) is linear | ||||
\(m_6\!\) | \(f\!\) is not uniform | \(f\!\) is informed | ||||
\(m_7\!\) | Not just true | |||||
\(m_8\!\) | Just true | |||||
\(m_9\!\) | \(f\!\) is uniform | \(f\!\) is not informed | ||||
\(m_{10}\!\) | Something is not \(x\!\) | \(f\!\) is not linear | ||||
\(m_{11}\!\) | Not just \(x\!\) | |||||
\(m_{12}\!\) | Something is \(x\!\) | |||||
\(m_{13}\!\) | Not just not \(x\!\) | |||||
\(m_{14}\!\) | Not just false | Something exists | ||||
\(m_{15}\!\) | Anything happens |
Table 12
\(x:\) \(y:\) |
1100 1010 |
\(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) |
\(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0001 | \((x)(y)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | ||
\(f_2\) | 0010 | \((x) y\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | ||||
\(f_3\) | 0011 | \((x)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
\(f_4\) | 0100 | \(x (y)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||
\(f_5\) | 0101 | \((y)\!\) | ||||||||||||||||||||||||
\(f_6\) | 0110 | \((x, y)\!\) | ||||||||||||||||||||||||
\(f_7\) | 0111 | \((x y)\!\) | ||||||||||||||||||||||||
\(f_8\) | 1000 | \(x y\!\) | ||||||||||||||||||||||||
\(f_9\) | 1001 | \(((x, y))\!\) | ||||||||||||||||||||||||
\(f_{10}\) | 1010 | \(y\!\) | ||||||||||||||||||||||||
\(f_{11}\) | 1011 | \((x (y))\!\) | ||||||||||||||||||||||||
\(f_{12}\) | 1100 | \(x\!\) | ||||||||||||||||||||||||
\(f_{13}\) | 1101 | \(((x) y)\!\) | ||||||||||||||||||||||||
\(f_{14}\) | 1110 | \(((x)(y))\!\) | ||||||||||||||||||||||||
\(f_{15}\) | 1111 | \(((~))\!\) |
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) |
\(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_1\) | 0001 | \((u)(v)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 13
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \(\alpha_0\) | \(\alpha_1\) | \(\alpha_2\) | \(\alpha_3\) | \(\alpha_4\) | \(\alpha_5\) | \(\alpha_6\) | \(\alpha_7\) | \(\alpha_8\) | \(\alpha_9\) | \(\alpha_{10}\) | \(\alpha_{11}\) | \(\alpha_{12}\) | \(\alpha_{13}\) | \(\alpha_{14}\) | \(\alpha_{15}\) |
\(f_0\) | 0000 | \((~)\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_2\) | 0010 | \((u) v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_5\) | 0101 | \((v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_7\) | 0111 | \((u v)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_9\) | 1001 | \(((u, v))\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
\(f_{10}\) | 1010 | \(v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_{12}\) | 1100 | \(u\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_{15}\) | 1111 | \(((~))\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Table 14
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \(\beta_0\) | \(\beta_1\) | \(\beta_2\) | \(\beta_3\) | \(\beta_4\) | \(\beta_5\) | \(\beta_6\) | \(\beta_7\) | \(\beta_8\) | \(\beta_9\) | \(\beta_{10}\) | \(\beta_{11}\) | \(\beta_{12}\) | \(\beta_{13}\) | \(\beta_{14}\) | \(\beta_{15}\) |
\(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(f_1\) | 0001 | \((u)(v)\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
\(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
\(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
\(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
\(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Figure 15
Table 16
\(\begin{array}{clcl} \mathrm{A} & \mathrm{Universal~Affirmative} & \mathrm{All}\ u\ \mathrm{is}\ v & \mathrm{Indicator~of}\ u (v) = 0 \\ \mathrm{E} & \mathrm{Universal~Negative} & \mathrm{All}\ u\ \mathrm{is}\ (v) & \mathrm{Indicator~of}\ u \cdot v = 0 \\ \mathrm{I} & \mathrm{Particular~Affirmative} & \mathrm{Some}\ u\ \mathrm{is}\ v & \mathrm{Indicator~of}\ u \cdot v = 1 \\ \mathrm{O} & \mathrm{Particular~Negative} & \mathrm{Some}\ u\ \mathrm{is}\ (v) & \mathrm{Indicator~of}\ u (v) = 1 \\ \end{array}\) |
Table 17
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \((\ell_{11})\) \(\text{No } u \) \(\text{is } v \) |
\((\ell_{10})\) \(\text{No } u \) \(\text{is }(v)\) |
\((\ell_{01})\) \(\text{No }(u)\) \(\text{is } v \) |
\((\ell_{00})\) \(\text{No }(u)\) \(\text{is }(v)\) |
\( \ell_{00} \) \(\text{Some }(u)\) \(\text{is }(v)\) |
\( \ell_{01} \) \(\text{Some }(u)\) \(\text{is } v \) |
\( \ell_{10} \) \(\text{Some } u \) \(\text{is }(v)\) |
\( \ell_{11} \) \(\text{Some } u \) \(\text{is } v \) |
\(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
\(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
\(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
\(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
\(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
\(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
Table 18
\(u:\) \(v:\) |
1100 1010 |
\(f\!\) | \((\ell_{11})\) \(\text{No } u \) \(\text{is } v \) |
\((\ell_{10})\) \(\text{No } u \) \(\text{is }(v)\) |
\((\ell_{01})\) \(\text{No }(u)\) \(\text{is } v \) |
\((\ell_{00})\) \(\text{No }(u)\) \(\text{is }(v)\) |
\( \ell_{00} \) \(\text{Some }(u)\) \(\text{is }(v)\) |
\( \ell_{01} \) \(\text{Some }(u)\) \(\text{is } v \) |
\( \ell_{10} \) \(\text{Some } u \) \(\text{is }(v)\) |
\( \ell_{11} \) \(\text{Some } u \) \(\text{is } v \) |
\(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
\(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
\(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
\(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
\(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
\(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
\(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
\(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
\(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
\(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
\(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
Table 19
\(\text{Mnemonic}\) | \(\text{Category}\) | \(\text{Classical Form}\) | \(\text{Alternate Form}\) | \(\text{Symmetric Form}\) | \(\text{Operator}\) |
\(\text{E}\!\) \(\text{Exclusive}\) |
\(\text{Universal}\) \(\text{Negative}\) |
\(\text{All}\ u\ \text{is}\ (v)\) | \(\text{No}\ u\ \text{is}\ v \) | \((\ell_{11})\) | |
\(\text{A}\!\) \(\text{Absolute}\) |
\(\text{Universal}\) \(\text{Affirmative}\) |
\(\text{All}\ u\ \text{is}\ v \) | \(\text{No}\ u\ \text{is}\ (v)\) | \((\ell_{10})\) | |
\(\text{All}\ v\ \text{is}\ u \) | \(\text{No}\ v\ \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\ v \) | \((\ell_{01})\) | ||
\(\text{All}\ (v)\ \text{is}\ u \) | \(\text{No}\ (v)\ \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\ (v)\) | \((\ell_{00})\) | ||
\(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\ell_{00}\!\) | |||
\(\text{Some}\ (u)\ \text{is}\ v\) | \(\text{Some}\ (u)\ \text{is}\ v\) | \(\ell_{01}\!\) | |||
\(\text{O}\!\) \(\text{Obtrusive}\) |
\(\text{Particular}\) \(\text{Negative}\) |
\(\text{Some}\ u\ \text{is}\ (v)\) | \(\text{Some}\ u\ \text{is}\ (v)\) | \(\ell_{10}\!\) | |
\(\text{I}\!\) \(\text{Indefinite}\) |
\(\text{Particular}\) \(\text{Affirmative}\) |
\(\text{Some}\ u\ \text{is}\ v\) | \(\text{Some}\ u\ \text{is}\ v\) | \(\ell_{11}\!\) |