Difference between revisions of "User:Jon Awbrey/SANDBOX"

MyWikiBiz, Author Your Legacy — Saturday November 23, 2024
Jump to navigationJump to search
 
(37 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Grammar Stuff==
+
==Logic of Relatives==
 +
 
 +
<br>
 +
 
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 3.  Relational Composition
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    L    #    X    |    Y    |        |
 +
o---------o---------o---------o---------o
 +
|    M    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|  L o M  #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 
 +
<br>
 +
 
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 3.  Relational Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>M\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L \circ M</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 9.  Composite of Triadic and Dyadic Relations
 +
o---------o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o=========o
 +
|    G    #    T    |    U    |        |    V    |
 +
o---------o---------o---------o---------o---------o
 +
|    L    #        |    U    |    W    |        |
 +
o---------o---------o---------o---------o---------o
 +
|  G o L  #    T    |        |    W    |    V    |
 +
o---------o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 
 +
<br>
 +
 
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%"
 +
|+ <math>\text{Table 9.  Composite of Triadic and Dyadic Relations}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G\!</math>
 +
| <math>T\!</math>
 +
| <math>U\!</math>
 +
| &nbsp;
 +
| <math>V\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| &nbsp;
 +
| <math>U\!</math>
 +
| <math>W\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>G \circ L</math>
 +
| <math>T\!</math>
 +
| &nbsp;
 +
| <math>W\!</math>
 +
| <math>V\!</math>
 +
|}
  
Working from a structural description of the cactus language, or any suitable formal grammar for <math>\mathfrak{C} (\mathfrak{P}),</math> it is possible to give a recursive definition of the function called <math>\operatorname{Parse}</math> that maps each sentence in <math>\operatorname{PARCE} (\mathfrak{P})</math> to the corresponding graph in <math>\operatorname{PARC} (\mathfrak{P}).</math>  One way to do this proceeds as follows:
+
<br>
  
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 
<pre>
 
<pre>
1The parse of the concatenation Conc^k of the k sentences S_j,
+
Table 13Another Brand of Composition
    for j = 1 to k, is defined recursively as follows:
+
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    G    #    X    |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|    T    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|  G o T  #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 
 +
<br>
  
    aParse(Conc^0)        = Node^0.
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 13Another Brand of Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>T\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G \circ T</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
  
    b.  For k > 0,
+
<br>
  
         Parse(Conc^k_j S_j) = Node^k_j Parse(S_j).
+
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 15.  Conjunction Via Composition
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    L,  #    X    |    X    |    Y    |
 +
o---------o---------o---------o---------o
 +
|    S    #         |    X    |    Y    |
 +
o---------o---------o---------o---------o
 +
| L , S #    X    |        |    Y    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
  
2.  The parse of the surcatenation Surc^k of the k sentences S_j,
+
<br>
    for j = 1 to k, is defined recursively as follows:
 
  
    aParse(Surc^0)        = Lobe^0.
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 15Conjunction Via Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L,\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>S\!</math>
 +
| &nbsp;
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L,\!S</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
|}
  
    b.  For k > 0,
+
<br>
  
         Parse(Surc^k_j S_j) = Lobe^k_j Parse(S_j).
+
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 18.  Relational Composition P o Q
 +
o---------o---------o---------o---------o
 +
|         #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    P    #    X    |    Y    |        |
 +
o---------o---------o---------o---------o
 +
|    Q    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
| P o Q #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 
</pre>
 
</pre>
 +
|}
 +
 +
<br>
  
---
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 18.  Relational Composition}~ P \circ Q</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>P\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>Q\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>P \circ Q</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
  
<ol style="list-style-type:decimal">
+
<br>
  
<li>The parse of the concatenation <math>\operatorname{Conc}_{j=1}^k</math> of the sequence of <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>
+
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 20.  Arrow:  J(L(u, v)) = K(Ju, Jv)
 +
o---------o---------o---------o---------o
 +
|        #    J    |    J    |    J    |
 +
o=========o=========o=========o=========o
 +
|    K    #    X    |    X    |    X    |
 +
o---------o---------o---------o---------o
 +
|    L    #    Y    |    Y    |    Y    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
  
<ol style="list-style-type:lower-alpha">
+
<br>
  
<li><math>\operatorname{Parse} (\operatorname{Conc}^0) ~=~ \operatorname{Node}^0.</math>
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 20.  Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>K\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| <math>Y\!</math>
 +
| <math>Y\!</math>
 +
| <math>Y\!</math>
 +
|}
  
<li>
+
<br>
<p>For <math>\ell > 1,\!</math></p>
 
  
<p><math>\operatorname{Conc}_{j=1}^\ell s_j \ = \ \operatorname{Conc}_{j=1}^{\ell - 1} s_j \, \cdot \, s_\ell.</math></p></li>
+
==Grammar Stuff==
  
</ol>
+
<br>
  
<li>The ''surcatenation'' <math>\operatorname{Surc}_{j=1}^k</math> of the sequence of <math>k\!</math> strings <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 +
|+ '''Table 13.  Algorithmic Translation Rules'''
 +
|- style="background:whitesmoke"
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 +
| width="33%"    | <math>\text{Sentence in PARCE}\!</math>
 +
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
 +
| width="33%"    | <math>\text{Graph in PARC}\!</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="33%"    | <math>\operatorname{Conc}^0</math>
 +
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
 +
| width="33%"    | <math>\operatorname{Node}^0</math>
 +
|-
 +
| width="33%"    | <math>\operatorname{Conc}_{j=1}^k s_j</math>
 +
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
 +
| width="33%"    | <math>\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="33%"    | <math>\operatorname{Surc}^0</math>
 +
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
 +
| width="33%"    | <math>\operatorname{Lobe}^0</math>
 +
|-
 +
| width="33%"    | <math>\operatorname{Surc}_{j=1}^k s_j</math>
 +
| align="center" | <math>\xrightarrow{\operatorname{Parse}}</math>
 +
| width="33%"    | <math>\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)</math>
 +
|}
 +
|}
  
<ol style="list-style-type:lower-alpha">
+
<br>
  
<li><math>\operatorname{Surc}_{j=1}^1 s_j \ = \ ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></li>
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 +
|+ '''Table 14.1  Semantic Translation : Functional Form'''
 +
|- style="background:whitesmoke"
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 +
| width="20%" | <math>\operatorname{Sentence}</math>
 +
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}</math>
 +
| width="20%" | <math>\operatorname{Graph}</math>
 +
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}</math>
 +
| width="20%" | <math>\operatorname{Proposition}</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="20%" | <math>s_j\!</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>C_j\!</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>q_j\!</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="20%" | <math>\operatorname{Conc}^0</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\operatorname{Node}^0</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\underline{1}</math>
 +
|-
 +
| width="20%" | <math>\operatorname{Conc}^k_j s_j</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\operatorname{Node}^k_j C_j</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="20%" | <math>\operatorname{Surc}^0</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\operatorname{Lobe}^0</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\underline{0}</math>
 +
|-
 +
| width="20%" | <math>\operatorname{Surc}^k_j s_j</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\operatorname{Lobe}^k_j C_j</math>
 +
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
 +
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 +
|}
 +
|}
  
<li>
+
<br>
<p>For <math>\ell > 1,\!</math></p>
 
  
<p><math>\operatorname{Surc}_{j=1}^\ell s_j \ = \ \operatorname{Surc}_{j=1}^{\ell - 1} s_j \, \cdot \, ( \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_\ell \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li>
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 +
|+ '''Table 14.2  Semantic Translation : Equational Form'''
 +
|- style="background:whitesmoke"
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 +
| width="20%" | <math>\downharpoonleft \operatorname{Sentence} \downharpoonright</math>
 +
| width="20%" | <math>\stackrel{\operatorname{Parse}}{=}</math>
 +
| width="20%" | <math>\downharpoonleft \operatorname{Graph} \downharpoonright</math>
 +
| width="20%" | <math>\stackrel{\operatorname{Denotation}}{=}</math>
 +
| width="20%" | <math>\operatorname{Proposition}</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="20%" | <math>\downharpoonleft s_j \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\downharpoonleft C_j \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>q_j\!</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="20%" | <math>\downharpoonleft \operatorname{Conc}^0 \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\downharpoonleft \operatorname{Node}^0 \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\underline{1}</math>
 +
|-
 +
| width="20%" | <math>\downharpoonleft \operatorname{Conc}^k_j s_j \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\downharpoonleft \operatorname{Node}^k_j C_j \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 +
| width="20%" | <math>\downharpoonleft \operatorname{Surc}^0 \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\downharpoonleft \operatorname{Lobe}^0 \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\underline{0}</math>
 +
|-
 +
| width="20%" | <math>\downharpoonleft \operatorname{Surc}^k_j s_j \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\downharpoonleft \operatorname{Lobe}^k_j C_j \downharpoonright</math>
 +
| width="20%" | <math>=\!</math>
 +
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 +
|}
 +
|}
  
</ol></ol>
+
<br>
  
 
==Table Stuff==
 
==Table Stuff==
 +
 +
<br>
 +
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 +
|+ '''Table 15.  Boolean Functions on Zero Variables'''
 +
|- style="background:whitesmoke"
 +
| width="14%" | <math>F\!</math>
 +
| width="14%" | <math>F\!</math>
 +
| width="48%" | <math>F()\!</math>
 +
| width="24%" | <math>F\!</math>
 +
|-
 +
| <math>\underline{0}</math>
 +
| <math>F_0^{(0)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>(~)</math>
 +
|-
 +
| <math>\underline{1}</math>
 +
| <math>F_1^{(0)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>((~))</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%"
 +
|+ '''Table 16.  Boolean Functions on One Variable'''
 +
|- style="background:whitesmoke"
 +
| width="14%" | <math>F\!</math>
 +
| width="14%" | <math>F\!</math>
 +
| colspan="2" | <math>F(x)\!</math>
 +
| width="24%" | <math>F\!</math>
 +
|- style="background:whitesmoke"
 +
| width="14%" | &nbsp;
 +
| width="14%" | &nbsp;
 +
| width="24%" | <math>F(\underline{1})</math>
 +
| width="24%" | <math>F(\underline{0})</math>
 +
| width="24%" | &nbsp;
 +
|-
 +
| <math>F_0^{(1)}\!</math>
 +
| <math>F_{00}^{(1)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>(~)</math>
 +
|-
 +
| <math>F_1^{(1)}\!</math>
 +
| <math>F_{01}^{(1)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>(x)\!</math>
 +
|-
 +
| <math>F_2^{(1)}\!</math>
 +
| <math>F_{10}^{(1)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>x\!</math>
 +
|-
 +
| <math>F_3^{(1)}\!</math>
 +
| <math>F_{11}^{(1)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>((~))</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%"
 +
|+ '''Table 17.  Boolean Functions on Two Variables'''
 +
|- style="background:whitesmoke"
 +
| width="14%" | <math>F\!</math>
 +
| width="14%" | <math>F\!</math>
 +
| colspan="4" | <math>F(x, y)\!</math>
 +
| width="24%" | <math>F\!</math>
 +
|- style="background:whitesmoke"
 +
| width="14%" | &nbsp;
 +
| width="14%" | &nbsp;
 +
| width="12%" | <math>F(\underline{1}, \underline{1})</math>
 +
| width="12%" | <math>F(\underline{1}, \underline{0})</math>
 +
| width="12%" | <math>F(\underline{0}, \underline{1})</math>
 +
| width="12%" | <math>F(\underline{0}, \underline{0})</math>
 +
| width="24%" | &nbsp;
 +
|-
 +
| <math>F_{0}^{(2)}\!</math>
 +
| <math>F_{0000}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>(~)</math>
 +
|-
 +
| <math>F_{1}^{(2)}\!</math>
 +
| <math>F_{0001}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>(x)(y)\!</math>
 +
|-
 +
| <math>F_{2}^{(2)}\!</math>
 +
| <math>F_{0010}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>(x) y\!</math>
 +
|-
 +
| <math>F_{3}^{(2)}\!</math>
 +
| <math>F_{0011}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>(x)\!</math>
 +
|-
 +
| <math>F_{4}^{(2)}\!</math>
 +
| <math>F_{0100}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>x (y)\!</math>
 +
|-
 +
| <math>F_{5}^{(2)}\!</math>
 +
| <math>F_{0101}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>(y)\!</math>
 +
|-
 +
| <math>F_{6}^{(2)}\!</math>
 +
| <math>F_{0110}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>(x, y)\!</math>
 +
|-
 +
| <math>F_{7}^{(2)}\!</math>
 +
| <math>F_{0111}^{(2)}\!</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>(x y)\!</math>
 +
|-
 +
| <math>F_{8}^{(2)}\!</math>
 +
| <math>F_{1000}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>x y\!</math>
 +
|-
 +
| <math>F_{9}^{(2)}\!</math>
 +
| <math>F_{1001}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>((x, y))\!</math>
 +
|-
 +
| <math>F_{10}^{(2)}\!</math>
 +
| <math>F_{1010}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>y\!</math>
 +
|-
 +
| <math>F_{11}^{(2)}\!</math>
 +
| <math>F_{1011}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>(x (y))\!</math>
 +
|-
 +
| <math>F_{12}^{(2)}\!</math>
 +
| <math>F_{1100}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{0}</math>
 +
| <math>x\!</math>
 +
|-
 +
| <math>F_{13}^{(2)}\!</math>
 +
| <math>F_{1101}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>\underline{1}</math>
 +
| <math>((x)y)\!</math>
 +
|-
 +
| <math>F_{14}^{(2)}\!</math>
 +
| <math>F_{1110}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{0}</math>
 +
| <math>((x)(y))\!</math>
 +
|-
 +
| <math>F_{15}^{(2)}\!</math>
 +
| <math>F_{1111}^{(2)}\!</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>\underline{1}</math>
 +
| <math>((~))</math>
 +
|}
 +
 +
<br>
 +
 +
----
  
 
<br>
 
<br>

Latest revision as of 13:50, 24 April 2009

Logic of Relatives


Table 3.  Relational Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    L    #    X    |    Y    |         |
o---------o---------o---------o---------o
|    M    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  L o M  #    X    |         |    Z    |
o---------o---------o---------o---------o


\(\text{Table 3. Relational Composition}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(L\!\) \(X\!\) \(Y\!\)  
\(M\!\)   \(Y\!\) \(Z\!\)
\(L \circ M\) \(X\!\)   \(Z\!\)


Table 9.  Composite of Triadic and Dyadic Relations
o---------o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o=========o
|    G    #    T    |    U    |         |    V    |
o---------o---------o---------o---------o---------o
|    L    #         |    U    |    W    |         |
o---------o---------o---------o---------o---------o
|  G o L  #    T    |         |    W    |    V    |
o---------o---------o---------o---------o---------o


\(\text{Table 9. Composite of Triadic and Dyadic Relations}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(G\!\) \(T\!\) \(U\!\)   \(V\!\)
\(L\!\)   \(U\!\) \(W\!\)  
\(G \circ L\) \(T\!\)   \(W\!\) \(V\!\)


Table 13.  Another Brand of Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    G    #    X    |    Y    |    Z    |
o---------o---------o---------o---------o
|    T    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  G o T  #    X    |         |    Z    |
o---------o---------o---------o---------o


\(\text{Table 13. Another Brand of Composition}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(G\!\) \(X\!\) \(Y\!\) \(Z\!\)
\(T\!\)   \(Y\!\) \(Z\!\)
\(G \circ T\) \(X\!\)   \(Z\!\)


Table 15.  Conjunction Via Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    L,   #    X    |    X    |    Y    |
o---------o---------o---------o---------o
|    S    #         |    X    |    Y    |
o---------o---------o---------o---------o
|  L , S  #    X    |         |    Y    |
o---------o---------o---------o---------o


\(\text{Table 15. Conjunction Via Composition}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(L,\!\) \(X\!\) \(X\!\) \(Y\!\)
\(S\!\)   \(X\!\) \(Y\!\)
\(L,\!S\) \(X\!\)   \(Y\!\)


Table 18.  Relational Composition P o Q
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    P    #    X    |    Y    |         |
o---------o---------o---------o---------o
|    Q    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  P o Q  #    X    |         |    Z    |
o---------o---------o---------o---------o


\(\text{Table 18. Relational Composition}~ P \circ Q\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(P\!\) \(X\!\) \(Y\!\)  
\(Q\!\)   \(Y\!\) \(Z\!\)
\(P \circ Q\) \(X\!\)   \(Z\!\)


Table 20.  Arrow:  J(L(u, v)) = K(Ju, Jv)
o---------o---------o---------o---------o
|         #    J    |    J    |    J    |
o=========o=========o=========o=========o
|    K    #    X    |    X    |    X    |
o---------o---------o---------o---------o
|    L    #    Y    |    Y    |    Y    |
o---------o---------o---------o---------o


\(\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)\)
  \(J\!\) \(J\!\) \(J\!\)
\(K\!\) \(X\!\) \(X\!\) \(X\!\)
\(L\!\) \(Y\!\) \(Y\!\) \(Y\!\)


Grammar Stuff


Table 13. Algorithmic Translation Rules
\(\text{Sentence in PARCE}\!\) \(\xrightarrow{\operatorname{Parse}}\) \(\text{Graph in PARC}\!\)
\(\operatorname{Conc}^0\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Node}^0\)
\(\operatorname{Conc}_{j=1}^k s_j\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)\)
\(\operatorname{Surc}^0\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Lobe}^0\)
\(\operatorname{Surc}_{j=1}^k s_j\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)\)


Table 14.1 Semantic Translation : Functional Form
\(\operatorname{Sentence}\) \(\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}\) \(\operatorname{Graph}\) \(\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}\) \(\operatorname{Proposition}\)
\(s_j\!\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(C_j\!\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(q_j\!\)
\(\operatorname{Conc}^0\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\operatorname{Node}^0\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\underline{1}\)
\(\operatorname{Conc}^k_j s_j\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\operatorname{Node}^k_j C_j\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\operatorname{Conj}^k_j q_j\)
\(\operatorname{Surc}^0\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\operatorname{Lobe}^0\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\underline{0}\)
\(\operatorname{Surc}^k_j s_j\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\operatorname{Lobe}^k_j C_j\) \(\xrightarrow{\operatorname{~~~~~~~~~~}}\) \(\operatorname{Surj}^k_j q_j\)


Table 14.2 Semantic Translation : Equational Form
\(\downharpoonleft \operatorname{Sentence} \downharpoonright\) \(\stackrel{\operatorname{Parse}}{=}\) \(\downharpoonleft \operatorname{Graph} \downharpoonright\) \(\stackrel{\operatorname{Denotation}}{=}\) \(\operatorname{Proposition}\)
\(\downharpoonleft s_j \downharpoonright\) \(=\!\) \(\downharpoonleft C_j \downharpoonright\) \(=\!\) \(q_j\!\)
\(\downharpoonleft \operatorname{Conc}^0 \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Node}^0 \downharpoonright\) \(=\!\) \(\underline{1}\)
\(\downharpoonleft \operatorname{Conc}^k_j s_j \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Node}^k_j C_j \downharpoonright\) \(=\!\) \(\operatorname{Conj}^k_j q_j\)
\(\downharpoonleft \operatorname{Surc}^0 \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Lobe}^0 \downharpoonright\) \(=\!\) \(\underline{0}\)
\(\downharpoonleft \operatorname{Surc}^k_j s_j \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Lobe}^k_j C_j \downharpoonright\) \(=\!\) \(\operatorname{Surj}^k_j q_j\)


Table Stuff


Table 15. Boolean Functions on Zero Variables
\(F\!\) \(F\!\) \(F()\!\) \(F\!\)
\(\underline{0}\) \(F_0^{(0)}\!\) \(\underline{0}\) \((~)\)
\(\underline{1}\) \(F_1^{(0)}\!\) \(\underline{1}\) \(((~))\)


Table 16. Boolean Functions on One Variable
\(F\!\) \(F\!\) \(F(x)\!\) \(F\!\)
    \(F(\underline{1})\) \(F(\underline{0})\)  
\(F_0^{(1)}\!\) \(F_{00}^{(1)}\!\) \(\underline{0}\) \(\underline{0}\) \((~)\)
\(F_1^{(1)}\!\) \(F_{01}^{(1)}\!\) \(\underline{0}\) \(\underline{1}\) \((x)\!\)
\(F_2^{(1)}\!\) \(F_{10}^{(1)}\!\) \(\underline{1}\) \(\underline{0}\) \(x\!\)
\(F_3^{(1)}\!\) \(F_{11}^{(1)}\!\) \(\underline{1}\) \(\underline{1}\) \(((~))\)


Table 17. Boolean Functions on Two Variables
\(F\!\) \(F\!\) \(F(x, y)\!\) \(F\!\)
    \(F(\underline{1}, \underline{1})\) \(F(\underline{1}, \underline{0})\) \(F(\underline{0}, \underline{1})\) \(F(\underline{0}, \underline{0})\)  
\(F_{0}^{(2)}\!\) \(F_{0000}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \((~)\)
\(F_{1}^{(2)}\!\) \(F_{0001}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \((x)(y)\!\)
\(F_{2}^{(2)}\!\) \(F_{0010}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \((x) y\!\)
\(F_{3}^{(2)}\!\) \(F_{0011}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \((x)\!\)
\(F_{4}^{(2)}\!\) \(F_{0100}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(x (y)\!\)
\(F_{5}^{(2)}\!\) \(F_{0101}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \((y)\!\)
\(F_{6}^{(2)}\!\) \(F_{0110}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \((x, y)\!\)
\(F_{7}^{(2)}\!\) \(F_{0111}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \((x y)\!\)
\(F_{8}^{(2)}\!\) \(F_{1000}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \(x y\!\)
\(F_{9}^{(2)}\!\) \(F_{1001}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \(((x, y))\!\)
\(F_{10}^{(2)}\!\) \(F_{1010}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \(y\!\)
\(F_{11}^{(2)}\!\) \(F_{1011}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \((x (y))\!\)
\(F_{12}^{(2)}\!\) \(F_{1100}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(x\!\)
\(F_{13}^{(2)}\!\) \(F_{1101}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \(((x)y)\!\)
\(F_{14}^{(2)}\!\) \(F_{1110}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \(((x)(y))\!\)
\(F_{15}^{(2)}\!\) \(F_{1111}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \(((~))\)




fixy
u =
v =
1 1 0 0
1 0 1 0
= u
= v
fjuv
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


A
u =
v =
1 1 0 0
1 0 1 0
= u
= v
B
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


u =
v =
1 1 0 0
1 0 1 0
= u
= v
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


u =
v =
x =
y =
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
= u
= v
= f‹u, v›
= g‹u, v›