Difference between revisions of "User:Jon Awbrey/SANDBOX"
MyWikiBiz, Author Your Legacy — Saturday November 23, 2024
Jump to navigationJump to searchJon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) |
||
(24 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | ==Logic of Relatives== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 3. Relational Composition | ||
+ | o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | L # X | Y | | | ||
+ | o---------o---------o---------o---------o | ||
+ | | M # | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | L o M # X | | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 3. Relational Composition}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>M\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L \circ M</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Z\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 9. Composite of Triadic and Dyadic Relations | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o=========o | ||
+ | | G # T | U | | V | | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | | L # | U | W | | | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | | G o L # T | | W | V | | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%" | ||
+ | |+ <math>\text{Table 9. Composite of Triadic and Dyadic Relations}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G\!</math> | ||
+ | | <math>T\!</math> | ||
+ | | <math>U\!</math> | ||
+ | | | ||
+ | | <math>V\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L\!</math> | ||
+ | | | ||
+ | | <math>U\!</math> | ||
+ | | <math>W\!</math> | ||
+ | | | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G \circ L</math> | ||
+ | | <math>T\!</math> | ||
+ | | | ||
+ | | <math>W\!</math> | ||
+ | | <math>V\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 13. Another Brand of Composition | ||
+ | o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | G # X | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | T # | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | G o T # X | | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 13. Another Brand of Composition}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>T\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G \circ T</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Z\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 15. Conjunction Via Composition | ||
+ | o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | L, # X | X | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | | S # | X | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | | L , S # X | | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 15. Conjunction Via Composition}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L,\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>S\!</math> | ||
+ | | | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L,\!S</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 18. Relational Composition P o Q | ||
+ | o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | P # X | Y | | | ||
+ | o---------o---------o---------o---------o | ||
+ | | Q # | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | P o Q # X | | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 18. Relational Composition}~ P \circ Q</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>P\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>Q\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>P \circ Q</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Z\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) | ||
+ | o---------o---------o---------o---------o | ||
+ | | # J | J | J | | ||
+ | o=========o=========o=========o=========o | ||
+ | | K # X | X | X | | ||
+ | o---------o---------o---------o---------o | ||
+ | | L # Y | Y | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>K\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>X\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
==Grammar Stuff== | ==Grammar Stuff== | ||
Line 150: | Line 415: | ||
<br> | <br> | ||
− | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
− | Table 15. Boolean Functions on Zero Variables | + | |+ '''Table 15. Boolean Functions on Zero Variables''' |
− | + | |- style="background:whitesmoke" | |
− | | | + | | width="14%" | <math>F\!</math> |
− | + | | width="14%" | <math>F\!</math> | |
− | | | + | | width="48%" | <math>F()\!</math> |
− | | %0% | + | | width="24%" | <math>F\!</math> |
− | | | + | |- |
− | | | + | | <math>\underline{0}</math> |
− | | | + | | <math>F_0^{(0)}\!</math> |
− | + | | <math>\underline{0}</math> | |
− | + | | <math>(~)</math> | |
+ | |- | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>F_1^{(0)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ '''Table 16. Boolean Functions on One Variable''' | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | colspan="2" | <math>F(x)\!</math> | ||
+ | | width="24%" | <math>F\!</math> | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | | ||
+ | | width="14%" | | ||
+ | | width="24%" | <math>F(\underline{1})</math> | ||
+ | | width="24%" | <math>F(\underline{0})</math> | ||
+ | | width="24%" | | ||
+ | |- | ||
+ | | <math>F_0^{(1)}\!</math> | ||
+ | | <math>F_{00}^{(1)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(~)</math> | ||
+ | |- | ||
+ | | <math>F_1^{(1)}\!</math> | ||
+ | | <math>F_{01}^{(1)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x)\!</math> | ||
+ | |- | ||
+ | | <math>F_2^{(1)}\!</math> | ||
+ | | <math>F_{10}^{(1)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x\!</math> | ||
+ | |- | ||
+ | | <math>F_3^{(1)}\!</math> | ||
+ | | <math>F_{11}^{(1)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ '''Table 17. Boolean Functions on Two Variables''' | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | colspan="4" | <math>F(x, y)\!</math> | ||
+ | | width="24%" | <math>F\!</math> | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | | ||
+ | | width="14%" | | ||
+ | | width="12%" | <math>F(\underline{1}, \underline{1})</math> | ||
+ | | width="12%" | <math>F(\underline{1}, \underline{0})</math> | ||
+ | | width="12%" | <math>F(\underline{0}, \underline{1})</math> | ||
+ | | width="12%" | <math>F(\underline{0}, \underline{0})</math> | ||
+ | | width="24%" | | ||
+ | |- | ||
+ | | <math>F_{0}^{(2)}\!</math> | ||
+ | | <math>F_{0000}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(~)</math> | ||
+ | |- | ||
+ | | <math>F_{1}^{(2)}\!</math> | ||
+ | | <math>F_{0001}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x)(y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{2}^{(2)}\!</math> | ||
+ | | <math>F_{0010}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(x) y\!</math> | ||
+ | |- | ||
+ | | <math>F_{3}^{(2)}\!</math> | ||
+ | | <math>F_{0011}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x)\!</math> | ||
+ | |- | ||
+ | | <math>F_{4}^{(2)}\!</math> | ||
+ | | <math>F_{0100}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x (y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{5}^{(2)}\!</math> | ||
+ | | <math>F_{0101}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{6}^{(2)}\!</math> | ||
+ | | <math>F_{0110}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(x, y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{7}^{(2)}\!</math> | ||
+ | | <math>F_{0111}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{8}^{(2)}\!</math> | ||
+ | | <math>F_{1000}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x y\!</math> | ||
+ | |- | ||
+ | | <math>F_{9}^{(2)}\!</math> | ||
+ | | <math>F_{1001}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((x, y))\!</math> | ||
+ | |- | ||
+ | | <math>F_{10}^{(2)}\!</math> | ||
+ | | <math>F_{1010}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>y\!</math> | ||
+ | |- | ||
+ | | <math>F_{11}^{(2)}\!</math> | ||
+ | | <math>F_{1011}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x (y))\!</math> | ||
+ | |- | ||
+ | | <math>F_{12}^{(2)}\!</math> | ||
+ | | <math>F_{1100}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x\!</math> | ||
+ | |- | ||
+ | | <math>F_{13}^{(2)}\!</math> | ||
+ | | <math>F_{1101}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((x)y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{14}^{(2)}\!</math> | ||
+ | | <math>F_{1110}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>((x)(y))\!</math> | ||
+ | |- | ||
+ | | <math>F_{15}^{(2)}\!</math> | ||
+ | | <math>F_{1111}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ---- | ||
<br> | <br> |
Latest revision as of 13:50, 24 April 2009
Logic of Relatives
Table 3. Relational Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L # X | Y | | o---------o---------o---------o---------o | M # | Y | Z | o---------o---------o---------o---------o | L o M # X | | Z | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(L\!\) | \(X\!\) | \(Y\!\) | |
\(M\!\) | \(Y\!\) | \(Z\!\) | |
\(L \circ M\) | \(X\!\) | \(Z\!\) |
Table 9. Composite of Triadic and Dyadic Relations o---------o---------o---------o---------o---------o | # !1! | !1! | !1! | !1! | o=========o=========o=========o=========o=========o | G # T | U | | V | o---------o---------o---------o---------o---------o | L # | U | W | | o---------o---------o---------o---------o---------o | G o L # T | | W | V | o---------o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(G\!\) | \(T\!\) | \(U\!\) | \(V\!\) | |
\(L\!\) | \(U\!\) | \(W\!\) | ||
\(G \circ L\) | \(T\!\) | \(W\!\) | \(V\!\) |
Table 13. Another Brand of Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | G # X | Y | Z | o---------o---------o---------o---------o | T # | Y | Z | o---------o---------o---------o---------o | G o T # X | | Z | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(G\!\) | \(X\!\) | \(Y\!\) | \(Z\!\) |
\(T\!\) | \(Y\!\) | \(Z\!\) | |
\(G \circ T\) | \(X\!\) | \(Z\!\) |
Table 15. Conjunction Via Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L, # X | X | Y | o---------o---------o---------o---------o | S # | X | Y | o---------o---------o---------o---------o | L , S # X | | Y | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(L,\!\) | \(X\!\) | \(X\!\) | \(Y\!\) |
\(S\!\) | \(X\!\) | \(Y\!\) | |
\(L,\!S\) | \(X\!\) | \(Y\!\) |
Table 18. Relational Composition P o Q o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | P # X | Y | | o---------o---------o---------o---------o | Q # | Y | Z | o---------o---------o---------o---------o | P o Q # X | | Z | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(P\!\) | \(X\!\) | \(Y\!\) | |
\(Q\!\) | \(Y\!\) | \(Z\!\) | |
\(P \circ Q\) | \(X\!\) | \(Z\!\) |
Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) o---------o---------o---------o---------o | # J | J | J | o=========o=========o=========o=========o | K # X | X | X | o---------o---------o---------o---------o | L # Y | Y | Y | o---------o---------o---------o---------o |
\(J\!\) | \(J\!\) | \(J\!\) | |
\(K\!\) | \(X\!\) | \(X\!\) | \(X\!\) |
\(L\!\) | \(Y\!\) | \(Y\!\) | \(Y\!\) |
Grammar Stuff
| ||||||
| ||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
Table Stuff
\(F\!\) | \(F\!\) | \(F()\!\) | \(F\!\) |
\(\underline{0}\) | \(F_0^{(0)}\!\) | \(\underline{0}\) | \((~)\) |
\(\underline{1}\) | \(F_1^{(0)}\!\) | \(\underline{1}\) | \(((~))\) |
\(F\!\) | \(F\!\) | \(F(x)\!\) | \(F\!\) | |
\(F(\underline{1})\) | \(F(\underline{0})\) | |||
\(F_0^{(1)}\!\) | \(F_{00}^{(1)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \((~)\) |
\(F_1^{(1)}\!\) | \(F_{01}^{(1)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \((x)\!\) |
\(F_2^{(1)}\!\) | \(F_{10}^{(1)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(x\!\) |
\(F_3^{(1)}\!\) | \(F_{11}^{(1)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(((~))\) |
\(F\!\) | \(F\!\) | \(F(x, y)\!\) | \(F\!\) | |||
\(F(\underline{1}, \underline{1})\) | \(F(\underline{1}, \underline{0})\) | \(F(\underline{0}, \underline{1})\) | \(F(\underline{0}, \underline{0})\) | |||
\(F_{0}^{(2)}\!\) | \(F_{0000}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \((~)\) |
\(F_{1}^{(2)}\!\) | \(F_{0001}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \((x)(y)\!\) |
\(F_{2}^{(2)}\!\) | \(F_{0010}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \((x) y\!\) |
\(F_{3}^{(2)}\!\) | \(F_{0011}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \((x)\!\) |
\(F_{4}^{(2)}\!\) | \(F_{0100}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(x (y)\!\) |
\(F_{5}^{(2)}\!\) | \(F_{0101}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \((y)\!\) |
\(F_{6}^{(2)}\!\) | \(F_{0110}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \((x, y)\!\) |
\(F_{7}^{(2)}\!\) | \(F_{0111}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \((x y)\!\) |
\(F_{8}^{(2)}\!\) | \(F_{1000}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(x y\!\) |
\(F_{9}^{(2)}\!\) | \(F_{1001}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(((x, y))\!\) |
\(F_{10}^{(2)}\!\) | \(F_{1010}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(y\!\) |
\(F_{11}^{(2)}\!\) | \(F_{1011}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \((x (y))\!\) |
\(F_{12}^{(2)}\!\) | \(F_{1100}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(x\!\) |
\(F_{13}^{(2)}\!\) | \(F_{1101}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(((x)y)\!\) |
\(F_{14}^{(2)}\!\) | \(F_{1110}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(((x)(y))\!\) |
\(F_{15}^{(2)}\!\) | \(F_{1111}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(((~))\) |
fi‹x, y› |
|
|
|
fj‹u, v› | ||||||
|
|
|
A |
|
|
|
B | ||||||
|
|
|
|
|
| ||||||
|
|
|
|
|
|