Difference between revisions of "User:Jon Awbrey/SANDBOX"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) |
||
Line 183: | Line 183: | ||
o----------o----------o---------------------o---------------------o----------o | o----------o----------o---------------------o---------------------o----------o | ||
</pre> | </pre> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" | ||
+ | |+ '''Table 6. Propositional Forms on One Variable''' | ||
+ | |- style="background:ghostwhite" | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_1 \\ \mbox{Decimal}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_2 \\ \mbox{Binary}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_3 \\ \mbox{Vector}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_4 \\ \mbox{Cactus}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_5 \\ \mbox{English}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_6 \\ \mbox{Ordinary}\end{matrix}</math> | ||
+ | |- style="background:ghostwhite" | ||
+ | | <math>~</math> | ||
+ | | align="right" | <math>x\colon\!</math> | ||
+ | | <math>1~0</math> | ||
+ | | <math>~</math> | ||
+ | | <math>~</math> | ||
+ | | <math>~</math> | ||
+ | |- | ||
+ | | <math>f_0\!</math> | ||
+ | | <math>f_{00}\!</math> | ||
+ | | <math>0~0</math> | ||
+ | | <math>(~)\!</math> | ||
+ | | <math>\mbox{false}\!</math> | ||
+ | | <math>0\!</math> | ||
+ | |- | ||
+ | | <math>f_1\!</math> | ||
+ | | <math>f_{01}\!</math> | ||
+ | | <math>0~1</math> | ||
+ | | <math>(x)\!</math> | ||
+ | | <math>\mbox{not}\ x</math> | ||
+ | | <math>\lnot x</math> | ||
+ | |- | ||
+ | | <math>f_2\!</math> | ||
+ | | <math>f_{10}\!</math> | ||
+ | | <math>1~0</math> | ||
+ | | <math>x\!</math> | ||
+ | | <math>x\!</math> | ||
+ | | <math>x\!</math> | ||
+ | |- | ||
+ | | <math>f_3\!</math> | ||
+ | | <math>f_{11}\!</math> | ||
+ | | <math>1~1</math> | ||
+ | | <math>((~))\!</math> | ||
+ | | <math>\mbox{true}\!</math> | ||
+ | | <math>1\!</math> | ||
+ | |} | ||
<br> | <br> | ||
Line 228: | Line 282: | ||
o----------o----------o----------o----------o----------o----------o----------o | o----------o----------o----------o----------o----------o----------o----------o | ||
</pre> | </pre> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" | ||
+ | |+ '''Table 7. Propositional Forms on Two Variables''' | ||
+ | |- style="background:ghostwhite" | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_1 \\ \mbox{Decimal}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_2 \\ \mbox{Binary}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_3 \\ \mbox{Vector}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_4 \\ \mbox{Cactus}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_5 \\ \mbox{English}\end{matrix}</math> | ||
+ | | style="width:16%" | | ||
+ | <math>\begin{matrix}\mathcal{L}_6 \\ \mbox{Ordinary}\end{matrix}</math> | ||
+ | |- style="background:ghostwhite" | ||
+ | | <math>~\!</math> | ||
+ | | align="right" | <math>x\colon\!</math> | ||
+ | | <math>1~1~0~0\!</math> | ||
+ | | <math>~\!</math> | ||
+ | | <math>~\!</math> | ||
+ | | <math>~\!</math> | ||
+ | |- | ||
+ | |- style="background:ghostwhite" | ||
+ | | <math>~\!</math> | ||
+ | | align="right" | <math>y\colon\!</math> | ||
+ | | <math>1~0~1~0\!</math> | ||
+ | | <math>~\!</math> | ||
+ | | <math>~\!</math> | ||
+ | | <math>~\!</math> | ||
+ | |- | ||
+ | | <math>f_{0}\!</math> | ||
+ | | <math>f_{0000}\!</math> | ||
+ | | <math>0~0~0~0\!</math> | ||
+ | | <math>(~)\!</math> | ||
+ | | <math>\mbox{false}\!</math> | ||
+ | | <math>0\!</math> | ||
+ | |- | ||
+ | | <math>f_{1}\!</math> | ||
+ | | <math>f_{0001}\!</math> | ||
+ | | <math>0~0~0~1\!</math> | ||
+ | | <math>(x)(y)\!</math> | ||
+ | | <math>\mbox{neither}\ x\ \mbox{nor}\ y\!</math> | ||
+ | | <math>\lnot x \land \lnot y\!</math> | ||
+ | |- | ||
+ | | <math>f_{2}\!</math> | ||
+ | | <math>f_{0010}\!</math> | ||
+ | | <math>0~0~1~0\!</math> | ||
+ | | <math>(x)\ y\!</math> | ||
+ | | <math>y\ \mbox{without}\ x\!</math> | ||
+ | | <math>\lnot x \land y\!</math> | ||
+ | |- | ||
+ | | <math>f_{3}\!</math> | ||
+ | | <math>f_{0011}\!</math> | ||
+ | | <math>0~0~1~1\!</math> | ||
+ | | <math>(x)\!</math> | ||
+ | | <math>\mbox{not}\ x\!</math> | ||
+ | | <math>\lnot x\!</math> | ||
+ | |- | ||
+ | | <math>f_{4}\!</math> | ||
+ | | <math>f_{0100}\!</math> | ||
+ | | <math>0~1~0~0\!</math> | ||
+ | | <math>x\ (y)\!</math> | ||
+ | | <math>x\ \mbox{without}\ y\!</math> | ||
+ | | <math>x \land \lnot y\!</math> | ||
+ | |- | ||
+ | | <math>f_{5}\!</math> | ||
+ | | <math>f_{0101}\!</math> | ||
+ | | <math>0~1~0~1\!</math> | ||
+ | | <math>(y)\!</math> | ||
+ | | <math>\mbox{not}\ y\!</math> | ||
+ | | <math>\lnot y\!</math> | ||
+ | |- | ||
+ | | <math>f_{6}\!</math> | ||
+ | | <math>f_{0110}\!</math> | ||
+ | | <math>0~1~1~0\!</math> | ||
+ | | <math>(x, y)\!</math> | ||
+ | | <math>x\ \mbox{not equal to}\ y\!</math> | ||
+ | | <math>x \ne y\!</math> | ||
+ | |- | ||
+ | | <math>f_{7}\!</math> | ||
+ | | <math>f_{0111}\!</math> | ||
+ | | <math>0~1~1~1\!</math> | ||
+ | | <math>(x\ y)\!</math> | ||
+ | | <math>\mbox{not both}\ x\ \mbox{and}\ y\!</math> | ||
+ | | <math>\lnot x \lor \lnot y\!</math> | ||
+ | |- | ||
+ | | <math>f_{8}\!</math> | ||
+ | | <math>f_{1000}\!</math> | ||
+ | | <math>1~0~0~0\!</math> | ||
+ | | <math>x\ y\!</math> | ||
+ | | <math>x\ \mbox{and}\ y\!</math> | ||
+ | | <math>x \land y\!</math> | ||
+ | |- | ||
+ | | <math>f_{9}\!</math> | ||
+ | | <math>f_{1001}\!</math> | ||
+ | | <math>1~0~0~1\!</math> | ||
+ | | <math>((x, y))\!</math> | ||
+ | | <math>x\ \mbox{equal to}\ y\!</math> | ||
+ | | <math>x = y\!</math> | ||
+ | |- | ||
+ | | <math>f_{10}\!</math> | ||
+ | | <math>f_{1010}\!</math> | ||
+ | | <math>1~0~1~0\!</math> | ||
+ | | <math>y\!</math> | ||
+ | | <math>y\!</math> | ||
+ | | <math>y\!</math> | ||
+ | |- | ||
+ | | <math>f_{11}\!</math> | ||
+ | | <math>f_{1011}\!</math> | ||
+ | | <math>1~0~1~1\!</math> | ||
+ | | <math>(x\ (y))\!</math> | ||
+ | | <math>\mbox{not}\ x\ \mbox{without}\ y\!</math> | ||
+ | | <math>x \Rightarrow y\!</math> | ||
+ | |- | ||
+ | | <math>f_{12}\!</math> | ||
+ | | <math>f_{1100}\!</math> | ||
+ | | <math>1~1~0~0\!</math> | ||
+ | | <math>x\!</math> | ||
+ | | <math>x\!</math> | ||
+ | | <math>x\!</math> | ||
+ | |- | ||
+ | | <math>f_{13}\!</math> | ||
+ | | <math>f_{1101}\!</math> | ||
+ | | <math>1~1~0~1\!</math> | ||
+ | | <math>((x)\ y)\!</math> | ||
+ | | <math>\mbox{not}\ y\ \mbox{without}\ x\!</math> | ||
+ | | <math>x \Leftarrow y\!</math> | ||
+ | |- | ||
+ | | <math>f_{14}\!</math> | ||
+ | | <math>f_{1110}\!</math> | ||
+ | | <math>1~1~1~0\!</math> | ||
+ | | <math>((x)(y))\!</math> | ||
+ | | <math>x\ \mbox{or}\ y\!</math> | ||
+ | | <math>x \lor y\!</math> | ||
+ | |- | ||
+ | | <math>f_{15}\!</math> | ||
+ | | <math>f_{1111}\!</math> | ||
+ | | <math>1~1~1~1\!</math> | ||
+ | | <math>((~))\!</math> | ||
+ | | <math>\mbox{true}\!</math> | ||
+ | | <math>1\!</math> | ||
+ | |} | ||
<br> | <br> |
Revision as of 15:56, 22 January 2009
Grammar Stuff
| ||||||
| ||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
Table Stuff
Table 15. Boolean Functions on Zero Variables o----------o----------o-------------------------------------------o----------o | Constant | Function | F() | Function | o----------o----------o-------------------------------------------o----------o | | | | | | %0% | F^0_0 | %0% | () | | | | | | | %1% | F^0_1 | %1% | (()) | | | | | | o----------o----------o-------------------------------------------o----------o
Table 16. Boolean Functions on One Variable o----------o----------o-------------------------------------------o----------o | Function | Function | F(x) | Function | o----------o----------o---------------------o---------------------o----------o | | | F(%0%) | F(%1%) | | o----------o----------o---------------------o---------------------o----------o | | | | | | | F^1_0 | F^1_00 | %0% | %0% | ( ) | | | | | | | | F^1_1 | F^1_01 | %0% | %1% | (x) | | | | | | | | F^1_2 | F^1_10 | %1% | %0% | x | | | | | | | | F^1_3 | F^1_11 | %1% | %1% | (( )) | | | | | | | o----------o----------o---------------------o---------------------o----------o
\(\begin{matrix}\mathcal{L}_1 \\ \mbox{Decimal}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_2 \\ \mbox{Binary}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_3 \\ \mbox{Vector}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_4 \\ \mbox{Cactus}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_5 \\ \mbox{English}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_6 \\ \mbox{Ordinary}\end{matrix}\) |
\(~\) | \(x\colon\!\) | \(1~0\) | \(~\) | \(~\) | \(~\) |
\(f_0\!\) | \(f_{00}\!\) | \(0~0\) | \((~)\!\) | \(\mbox{false}\!\) | \(0\!\) |
\(f_1\!\) | \(f_{01}\!\) | \(0~1\) | \((x)\!\) | \(\mbox{not}\ x\) | \(\lnot x\) |
\(f_2\!\) | \(f_{10}\!\) | \(1~0\) | \(x\!\) | \(x\!\) | \(x\!\) |
\(f_3\!\) | \(f_{11}\!\) | \(1~1\) | \(((~))\!\) | \(\mbox{true}\!\) | \(1\!\) |
Table 17. Boolean Functions on Two Variables o----------o----------o-------------------------------------------o----------o | Function | Function | F(x, y) | Function | o----------o----------o----------o----------o----------o----------o----------o | | | %1%, %1% | %1%, %0% | %0%, %1% | %0%, %0% | | o----------o----------o----------o----------o----------o----------o----------o | | | | | | | | | F^2_00 | F^2_0000 | %0% | %0% | %0% | %0% | () | | | | | | | | | | F^2_01 | F^2_0001 | %0% | %0% | %0% | %1% | (x)(y) | | | | | | | | | | F^2_02 | F^2_0010 | %0% | %0% | %1% | %0% | (x) y | | | | | | | | | | F^2_03 | F^2_0011 | %0% | %0% | %1% | %1% | (x) | | | | | | | | | | F^2_04 | F^2_0100 | %0% | %1% | %0% | %0% | x (y) | | | | | | | | | | F^2_05 | F^2_0101 | %0% | %1% | %0% | %1% | (y) | | | | | | | | | | F^2_06 | F^2_0110 | %0% | %1% | %1% | %0% | (x, y) | | | | | | | | | | F^2_07 | F^2_0111 | %0% | %1% | %1% | %1% | (x y) | | | | | | | | | | F^2_08 | F^2_1000 | %1% | %0% | %0% | %0% | x y | | | | | | | | | | F^2_09 | F^2_1001 | %1% | %0% | %0% | %1% | ((x, y)) | | | | | | | | | | F^2_10 | F^2_1010 | %1% | %0% | %1% | %0% | y | | | | | | | | | | F^2_11 | F^2_1011 | %1% | %0% | %1% | %1% | (x (y)) | | | | | | | | | | F^2_12 | F^2_1100 | %1% | %1% | %0% | %0% | x | | | | | | | | | | F^2_13 | F^2_1101 | %1% | %1% | %0% | %1% | ((x) y) | | | | | | | | | | F^2_14 | F^2_1110 | %1% | %1% | %1% | %0% | ((x)(y)) | | | | | | | | | | F^2_15 | F^2_1111 | %1% | %1% | %1% | %1% | (()) | | | | | | | | | o----------o----------o----------o----------o----------o----------o----------o
\(\begin{matrix}\mathcal{L}_1 \\ \mbox{Decimal}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_2 \\ \mbox{Binary}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_3 \\ \mbox{Vector}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_4 \\ \mbox{Cactus}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_5 \\ \mbox{English}\end{matrix}\) |
\(\begin{matrix}\mathcal{L}_6 \\ \mbox{Ordinary}\end{matrix}\) |
\(~\!\) | \(x\colon\!\) | \(1~1~0~0\!\) | \(~\!\) | \(~\!\) | \(~\!\) |
\(~\!\) | \(y\colon\!\) | \(1~0~1~0\!\) | \(~\!\) | \(~\!\) | \(~\!\) |
\(f_{0}\!\) | \(f_{0000}\!\) | \(0~0~0~0\!\) | \((~)\!\) | \(\mbox{false}\!\) | \(0\!\) |
\(f_{1}\!\) | \(f_{0001}\!\) | \(0~0~0~1\!\) | \((x)(y)\!\) | \(\mbox{neither}\ x\ \mbox{nor}\ y\!\) | \(\lnot x \land \lnot y\!\) |
\(f_{2}\!\) | \(f_{0010}\!\) | \(0~0~1~0\!\) | \((x)\ y\!\) | \(y\ \mbox{without}\ x\!\) | \(\lnot x \land y\!\) |
\(f_{3}\!\) | \(f_{0011}\!\) | \(0~0~1~1\!\) | \((x)\!\) | \(\mbox{not}\ x\!\) | \(\lnot x\!\) |
\(f_{4}\!\) | \(f_{0100}\!\) | \(0~1~0~0\!\) | \(x\ (y)\!\) | \(x\ \mbox{without}\ y\!\) | \(x \land \lnot y\!\) |
\(f_{5}\!\) | \(f_{0101}\!\) | \(0~1~0~1\!\) | \((y)\!\) | \(\mbox{not}\ y\!\) | \(\lnot y\!\) |
\(f_{6}\!\) | \(f_{0110}\!\) | \(0~1~1~0\!\) | \((x, y)\!\) | \(x\ \mbox{not equal to}\ y\!\) | \(x \ne y\!\) |
\(f_{7}\!\) | \(f_{0111}\!\) | \(0~1~1~1\!\) | \((x\ y)\!\) | \(\mbox{not both}\ x\ \mbox{and}\ y\!\) | \(\lnot x \lor \lnot y\!\) |
\(f_{8}\!\) | \(f_{1000}\!\) | \(1~0~0~0\!\) | \(x\ y\!\) | \(x\ \mbox{and}\ y\!\) | \(x \land y\!\) |
\(f_{9}\!\) | \(f_{1001}\!\) | \(1~0~0~1\!\) | \(((x, y))\!\) | \(x\ \mbox{equal to}\ y\!\) | \(x = y\!\) |
\(f_{10}\!\) | \(f_{1010}\!\) | \(1~0~1~0\!\) | \(y\!\) | \(y\!\) | \(y\!\) |
\(f_{11}\!\) | \(f_{1011}\!\) | \(1~0~1~1\!\) | \((x\ (y))\!\) | \(\mbox{not}\ x\ \mbox{without}\ y\!\) | \(x \Rightarrow y\!\) |
\(f_{12}\!\) | \(f_{1100}\!\) | \(1~1~0~0\!\) | \(x\!\) | \(x\!\) | \(x\!\) |
\(f_{13}\!\) | \(f_{1101}\!\) | \(1~1~0~1\!\) | \(((x)\ y)\!\) | \(\mbox{not}\ y\ \mbox{without}\ x\!\) | \(x \Leftarrow y\!\) |
\(f_{14}\!\) | \(f_{1110}\!\) | \(1~1~1~0\!\) | \(((x)(y))\!\) | \(x\ \mbox{or}\ y\!\) | \(x \lor y\!\) |
\(f_{15}\!\) | \(f_{1111}\!\) | \(1~1~1~1\!\) | \(((~))\!\) | \(\mbox{true}\!\) | \(1\!\) |
fi‹x, y› |
|
|
|
fj‹u, v› | ||||||
|
|
|
A |
|
|
|
B | ||||||
|
|
|
|
|
| ||||||
|
|
|
|
|
|