Difference between revisions of "Directory talk:Jon Awbrey/Papers/Inquiry Driven Systems"

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
(→‎Propositions and Sentences: delete reconciled changes)
(→‎Propositions and Sentences: delete reconciled changes)
Line 73: Line 73:
 
==Propositions and Sentences==
 
==Propositions and Sentences==
  
<pre>
+
'''Residual Remarks'''
The "fibers" of truth and falsity under a proposition f : X -> %B%
 
are subsets of X that are variously described as follows:
 
  
1.  The fiber of %1% under f  =  [| f |]  =  f^(-1)(%1%)
+
Where are we?  We just defined the concept of a functional fiber in several of the most excruciating ways possible, but that's just because this method of refining functional fibers is intended partly for machine consumputation, so its schemata must be rendered free of all admixture of animate intuition. However, just between us, a single picture may suffice to sum up the notion:
 
 
                              =  {x in X  :  f(x) = %1%}
 
 
 
                              =  {x in X  :  f(x) }.
 
 
 
2.  The fiber of %0% under f  =  ~[| f |]  =  f^(-1)(%0%)
 
 
 
                              =  {x in X  :  f(x) = %0%}
 
 
 
                              =  {x in X  :  (f(x)) }.
 
 
 
Perhaps this looks like a lot of work for the sake of what seems to be
 
such a trivial form of syntactic transformation, but it is an important
 
step in loosening up the syntactic privileges that are held by the sign
 
of logical equivalence "<=>", as written between logical sentences, and
 
by the sign of equality "=", as written between their logical values, or
 
else between propositions and their boolean values.  Doing this removes
 
a longstanding but wholly unnecessary conceptual confound between the
 
idea of an "assertion" and notion of an "equation", and it allows one
 
to treat logical equality on a par with the other logical operations.
 
 
 
----
 
 
 
Where are we?  We just defined the concept of a functional fiber in several
 
of the most excruciating ways possible, but that's just because this method
 
of refining functional fibers is intended partly for machine consumputation,
 
so its schemata must be rendered free of all admixture of animate intuition.
 
However, just between us, a single picture may suffice to sum up the notion:
 
  
 +
<pre>
 
|  X-[| f |] ,  [| f |]  c  X
 
|  X-[| f |] ,  [| f |]  c  X
 
|  o      o  o  o  o      |
 
|  o      o  o  o  o      |
Line 114: Line 85:
 
|      o          o          v
 
|      o          o          v
 
|  {  %0%    ,    %1%  }  =  %B%
 
|  {  %0%    ,    %1%  }  =  %B%
 +
</pre>
  
For the sake of current reference:
+
Why are we doing this?  The immediate reason &mdash; whose critique I defer &mdash; has to do with finding a ''modus vivendi'', whether a working compromise or a genuine integration, between the assertive-declarative languages and the functional-procedural languages that we have available for the sake of conceptual-logical-ontological analysis, clarification, description, inference, problem-solving, programming, representation, or whatever.
  
| The "fibers" of truth and falsity in a proposition f : X -> %B%
+
In the next few installments, I will be working toward the definition of an operation called the ''stretch''.  This is related to the concept from category theory that is called a ''pullback''.  As a few will know the uses of that already, maybe there's hope of stretching the number.
| are the subsets [| f |] and X - [| f |] of X that are variously
 
| described as follows:
 
|
 
| The fiber of %1% under f
 
|
 
| =  [| f |]  =  f^(-1)(%1%)
 
|
 
| =  {x in X  :  f(x) = %1%}
 
|
 
| =  {x in X  :  f(x) }.
 
|
 
| The fiber of %0% under f
 
|
 
| =  ~[| f |]  =  f^(-1)(%0%)
 
|
 
| =  {x in X  :  f(x) = %0%}
 
|
 
| =  {x in X  :  (f(x)) }.
 
 
 
Oh, by the way, the outer parentheses in "(f(g))" signify negation.
 
I did not have here the "stricken parentheses" that I normally use.
 
 
 
Why are we doing this?  The immediate reason -- whose critique I defer --
 
has to do with finding a modus vivendi, whether a working compromise or
 
a genuine integration, between the assertive-declarative languages and
 
the functional-procedural languages that we have available for the sake
 
of conceptual-logical-ontological analysis, clarification, description,
 
inference, problem-solving, programming, representation, or whatever.
 
 
 
In the next few installments, I will be working toward the definition
 
of an operation called the "stretch".  This is related to the concept
 
from category theory that is called a "pullback".  As a few will know
 
the uses of that already, maybe there's hope of stretching the number.
 
 
 
----
 
 
 
In this episode, I compile a collection of definitions,
 
leading up to the particular conception of a "sentence"
 
that I'll be using throughout the rest of this inquiry.
 
  
 +
<pre>
 
1.3.10.3  Propositions & Sentences (cont.)
 
1.3.10.3  Propositions & Sentences (cont.)
  

Revision as of 17:34, 15 January 2009

Fragmata

  1. Arisbe Site, "Inquiry Driven Systems", 30 Jun 2000, Draft 8.2
  2. Arisbe List, "Inquiry Driven Systems", 05 Jan 2002, Drafts 8.69 – 8.70
  3. Inquiry List, "Reflective Inquiry" (= IDS 3.2), 13 Apr 2004
  4. Inquiry List, "Higher Order Signs" (= IDS 3.4.9 – 3.4.10), 24 Nov 2004
  5. NKS Forum, "Higher Order Signs" (= IDS 3.4.9 – 3.4.10), 24 Nov 2004
  6. NKS Archive, "Higher Order Signs" (= IDS 3.4.9 – 3.4.10), 24 Nov 2004
  7. NKS Printable, "Higher Order Signs" (= IDS 3.4.9 – 3.4.10), 24 Nov 2004
  8. Inquiry List, "Recurring Themes" (= IDS 1.3.10.3 – 1.3.10.7), 17 Dec 2004 (= 16 Dec 2001)
  9. Inquiry List, "Language Of Cacti" (= IDS 1.3.10.8 – 1.3.10.13), 13 Dec 2004 (= 06 Jan 2002)
  10. NKS Forum, "Language Of Cacti", 13 Dec 2004 (= 06 Jan 2002)
  11. NKS Archive, "Language Of Cacti", 13 Dec 2004 (= 06 Jan 2002)
  12. NKS Printable, "Language Of Cacti", 13 Dec 2004 (= 06 Jan 2002)

Symbol Sandbox

  • Default : < > < > < > < >
  • Courier : < > < > < > < >
  • Fixedsys : < > < > < > < >
  • Pmingliu : < > < > < > < >
  • System : < > < > < > < >
  • Terminal : < > < > < > < >
  • LaTeX \[< >\] \(< >\!\) \(\lessdot \gtrdot\)


\[\begin{matrix} (\ ) & = & 0 & = & \mbox{false} \\ (x) & = & \tilde{x} & = & x' \\ (x, y) & = & \tilde{x}y \lor x\tilde{y} & = & x'y \lor xy' \\ (x, y, z) & = & \tilde{x}yz \lor x\tilde{y}z \lor xy\tilde{z} & = & x'yz \lor xy'z \lor xyz' \end{matrix}\]


Xj = PjQj ,

P = j Pj ,

Q = j Qj .


\[\begin{matrix} X_j = P_j \cup Q_j , & P = \bigcup_j P_j , & Q = \bigcup_j Q_j . \end{matrix}\]

Notes & Queries

JA: I'm in the process of merging and reconciling two slightly different versions of this paper, but it may be the end of the summer before I can finish doing that. Jon Awbrey 09:48, 29 May 2007 (PDT)

Jon, your content soars way over my head, but I am nonetheless delighted that you're using Centiare so effectively (if at least to get #1 Google search results for inquiry driven systems — even though that's currently not happening … Google's a bit quirky as it digests our site and "learns" where to put us in the rankings). I hope that you can keep up the effort, and that we can help you from an operational standpoint. MyWikiBiz 13:26, 29 May 2007 (PDT)

JA: Thanks for the interest, and I've been "pleased as punch" with the environment so far, mostly for reasons independent of the SEO factor — the quality of the working environment is more important to me than any need to corner the market in a given subject area. As far as I know, I coined the term "inquiry driven system" back in the (19)80's — though I know as soon as I say that, it will turn out that C.S. Peirce scooped me by a century or so — anyway, it's already the case that 90% of the stuff on the web about inquiry driven systems was written by yours truly. On the other hand, when my Centiare user and directory pages depose my Wikipedia user and discussion pages from the top of the Google heap, that will be the test case for me! Jon Awbrey 14:36, 29 May 2007 (PDT)

Congratulations!

Congratulations! Someone from Missouri visited this page today as a result of this search. — MyWikiBiz 11:57, 13 October 2008 (PDT)

What do you know, it is the "Show Me" State, after all … Jon Awbrey 12:06, 13 October 2008 (PDT)

Furthermore, someone from New York City visited the page today, via a #1 search result on Yahoo! for system inquiry examples. Congratulations, again! — MyWikiBiz 06:29, 23 October 2008 (PDT)

Propositions and Sentences

Residual Remarks

Where are we? We just defined the concept of a functional fiber in several of the most excruciating ways possible, but that's just because this method of refining functional fibers is intended partly for machine consumputation, so its schemata must be rendered free of all admixture of animate intuition. However, just between us, a single picture may suffice to sum up the notion:

|   X-[| f |] ,  [| f |]   c   X
|   o       o   o   o   o      |
|    \     /     \  |  /       |
|     \   /       \ | /        | f
|      \ /         \|/         |
|       o           o          v
|   {  %0%    ,    %1%  }  =  %B%

Why are we doing this? The immediate reason — whose critique I defer — has to do with finding a modus vivendi, whether a working compromise or a genuine integration, between the assertive-declarative languages and the functional-procedural languages that we have available for the sake of conceptual-logical-ontological analysis, clarification, description, inference, problem-solving, programming, representation, or whatever.

In the next few installments, I will be working toward the definition of an operation called the stretch. This is related to the concept from category theory that is called a pullback. As a few will know the uses of that already, maybe there's hope of stretching the number.

1.3.10.3  Propositions & Sentences (cont.)

As a purely informal aid to interpretation, I frequently use the letters
"p", "q" to denote propositions.  This can serve to tip off the reader
that a function is intended as the indicator function of a set, and
it saves us the trouble of declaring the type f : X -> %B% each
time that a function is introduced as a proposition.

Another convention of use in this context is to let boldface letters
stand for k-tuples, lists, or sequences of objects.  Typically, the
elements of the k-tuple, list, or sequence are all of one type, and
typically the boldface letter is of the same basic character as the
indexed or subscripted letters that are used denote the components
of the k-tuple, list, or sequence.  When the dimension of elements
and functions is clear from the context, we may elect to drop the
bolding of characters that name k-tuples, lists, and sequences.

For example:

1.  If x_1, ..., x_k in X,       then #x# = <x_1, ..., x_k> in X' = X^k.

2.  If x_1, ..., x_k  : X,       then #x# = <x_1, ..., x_k>  : X' = X^k.

3.  If f_1, ..., f_k  : X -> Y,  then #f# = <f_1, ..., f_k>  : (X -> Y)^k.

There is usually felt to be a slight but significant distinction between
the "membership statement" that uses the sign "in" as in Example (1) and
the "type statement" that uses the sign ":" as in examples (2) and (3).
The difference that appears to be perceived in categorical statements,
when those of the form "x in X" and those of the form "x : X" are set
in side by side comparisons with each other, is that a multitude of
objects can be said to have the same type without having to posit
the existence of a set to which they all belong.  Without trying
to decide whether I share this feeling or even fully understand
the distinction in question, I can only try to maintain a style
of notation that respects it to some degree.  It is conceivable
that the question of belonging to a set is rightly sensed to be
the more serious matter, one that has to do with the reality of
an object and the substance of a predicate, than the question of
falling under a type, that may have more to do with the way that
a sign is interpreted and the way that information about an object
is organized.  When it comes to the kinds of hypothetical statements
that appear in these Examples, those of the form "x in X => #x# in X'"
and "x : X => #x# : X'", these are usually read as implying some order
of synthetic construction, one whose contingent consequences involve the
constitution of a new space to contain the elements being compounded and
the recognition of a new type to characterize the elements being moulded,
respectively.  In these applications, the statement about types is again
taken to be less presumptive than the corresponding statement about sets,
since the apodosis is intended to do nothing more than to abbreviate and
to summarize what is already stated in the protasis.

A "boolean connection" of degree k, also known as a "boolean function"
on k variables, is a map of the form F : %B%^k -> %B%.  In other words,
a boolean connection of degree k is a proposition about things in the
universe X = %B%^k.

An "imagination" of degree k on X is a k-tuple of propositions about things
in the universe X.  By way of displaying the various kinds of notation that
are used to express this idea, the imagination #f# = <f_1, ..., f_k> is given
as a sequence of indicator functions f_j : X -> %B%, for j = 1 to k.  All of
these features of the typical imagination #f# can be summed up in either one
of two ways:  either in the form of a membership statement, to the effect that
#f# is in (X -> %B%)^k, or in the form of a type statement, to the effect that
#f# : (X -> %B%)^k, though perhaps the latter form is slightly more precise than
the former.

The "play of images" that is determined by #f# and x, more specifically,
the play of the imagination #f# = <f_1, ..., f_k> that has to with the
element x in X, is the k-tuple #b# = <b_1, ..., b_k> of values in %B%
that satisfies the equations b_j = f_j (x), for all j = 1 to k.

A "projection" of %B%^k, typically denoted by "p_j" or "pr_j",
is one of the maps p_j : %B%^k -> %B%, for j = 1 to k, that is
defined as follows:

If         #b#   =       <b_1, ..., b_k>           in  %B%^k,

then  p_j (#b#)  =  p_j (<b_1, ..., b_k>)  =  b_j  in  %B%.

The "projective imagination" of %B%^k is the imagination <p_1, ..., p_k>.

A "sentence about things in the universe", for short, a "sentence",
is a sign that denotes a proposition.  In other words, a sentence is
any sign that denotes an indicator function, any sign whose object is
a function of the form f : X -> B.

To emphasize the empirical contingency of this definition, one can say
that a sentence is any sign that is interpreted as naming a proposition,
any sign that is taken to denote an indicator function, or any sign whose
object happens to be a function of the form f : X -> B.

----

I finish out the Subsection on "Propositions & Sentences" with
an account of how I use concepts like "assertion" and "denial".

1.3.10.3  Propositions & Sentences (cont.)

An "expression" is a type of sign, for instance, a term or a sentence,
that has a value.  In forming this conception of an expression, I am
deliberately leaving a number of options open, for example, whether
the expression amounts to a term or to a sentence and whether it
ought to be accounted as denoting a value or as connoting a value.
Perhaps the expression has different values under different lights,
and perhaps it relates to them differently in different respects.
In the end, what one calls an expression matters less than where
its value lies.  Of course, no matter whether one chooses to call
an expression a "term" or a "sentence", if the value is an element
of %B%, then the expression affords the option of being treated as
a sentence, meaning that it is subject to assertion and composition
in the same way that any sentence is, having its value figure into
the values of larger expressions through the linkages of sentential
connectives, and affording us the consideration of what things in
what universe the corresponding proposition happens to indicate.

Expressions with this degree of flexibility in the types under
which they can be interpreted are difficult to translate from
their formal settings into more natural contexts.  Indeed,
the whole issue can be difficult to talk about, or even
to think about, since the grammatical categories of
sentential clauses and noun phrases are rarely so
fluid in natural language settings are they can
be rendered in artificially formal arenas.

To finesse the issue of whether an expression denotes or connotes its value,
or else to create a general term that covers what both possibilities have
in common, one can say that an expression "evalues" its value.

An "assertion" is just a sentence that is being used in a certain way,
namely, to indicate the indication of the indicator function that the
sentence is usually used to denote.  In other words, an assertion is
a sentence that is being converted to a certain use or that is being
interpreted in a certain role, and one whose immediate denotation is
being pursued to its substantive indication, specifically, the fiber
of truth of the proposition that the sentence potentially denotes.
Thus, an assertion is a sentence that is held to denote the set of
things in the universe for which the sentence is held to be true.

Taken in a context of communication, an assertion is basically a request
that the interpreter consider the things for which the sentence is true,
in other words, to find the fiber of truth in the associated proposition,
or to invert the indicator function that is denoted by the sentence with
respect to its possible value of truth.

A "denial" of a sentence z is an assertion of its negation -(z)-.
The denial acts as a request to think about the things for which the
sentence is false, in other words, to find the fiber of falsity in the
indicted proposition, or to invert the indicator function that is being
denoted by the sentence with respect to its possible value of falsity.

According to this manner of definition, any sign that happens to denote
a proposition, any sign that is taken as denoting an indicator function,
by that very fact alone successfully qualifies as a sentence.  That is,
a sentence is any sign that actually succeeds in denoting a proposition,
any sign that one way or another brings to mind, as its actual object,
a function of the form f : X -> B.

There are many features of this definition that need to be understood.
Indeed, there are problems involved in this whole style of definition
that need to be discussed, and doing this requires a slight excursion.