Changes

MyWikiBiz, Author Your Legacy — Friday May 03, 2024
Jump to navigationJump to search
no edit summary
Line 1: Line 1:  
{{DISPLAYTITLE:Propositions As Types}}
 
{{DISPLAYTITLE:Propositions As Types}}
 +
 +
'''NB.''' In this discussion, combinators are being applied on the right of their arguments.  The resulting formulas will look backwards to people who are accustomed to applying combinators on the left.
    
==Identity, or the Identifier==
 
==Identity, or the Identifier==
Line 2,223: Line 2,225:  
==Bibliography==
 
==Bibliography==
   −
Here are a three references on combinatory logic and lambda calculus, given in order of difficulty from introductory to advanced, that are especially pertinent to the use of combinators in computer science:
+
Here are three references on combinatory logic and lambda calculus, given in order of difficulty from introductory to advanced, that are especially pertinent to the use of combinators in computer science:
    
# Smullyan, R. (1985), ''To Mock a Mockingbird, And Other Logic Puzzles, Including an Amazing Adventure in Combinatory Logic'', Alfred A. Knopf, New York, NY.
 
# Smullyan, R. (1985), ''To Mock a Mockingbird, And Other Logic Puzzles, Including an Amazing Adventure in Combinatory Logic'', Alfred A. Knopf, New York, NY.
Line 2,274: Line 2,276:  
|-
 
|-
 
|
 
|
::<p><math>\begin{array}{c}
+
::<p><math>\dfrac{~ f : A \to B \quad g : B \to C ~}{gf : A \to C}</math></p>
\underline{~ f : A \to B ~~~~~ g : B \to C ~}
  −
\\
  −
gf : A \to C
  −
\end{array}</math></p>
   
|-
 
|-
 
|
 
|
Line 2,291: Line 2,289:  
|
 
|
 
<p>A ''category'' is a deductive system in which the following equations hold, for all <math>f : A \to B,</math> <math>g : B \to C,</math> and <math>h : C \to D.</math></p>
 
<p>A ''category'' is a deductive system in which the following equations hold, for all <math>f : A \to B,</math> <math>g : B \to C,</math> and <math>h : C \to D.</math></p>
 
+
|-
 +
|
 
::<p><math>f 1_A = f = 1_B f, \quad (hg)f = h(gf).</math></p>
 
::<p><math>f 1_A = f = 1_B f, \quad (hg)f = h(gf).</math></p>
 
+
|-
<p>(Lambek & Scott, 5).
+
|
 +
<p>(Lambek & Scott, 5).</p>
 
|}
 
|}
   Line 2,302: Line 2,302:  
|
 
|
 
<p>'''Definition 1.3.'''  A ''functor'' <math>F : \mathcal{A} \to \mathcal{B}</math> is first of all a morphism of graphs &hellip;, that is, it sends objects of <math>\mathcal{A}</math> to objects of <math>\mathcal{B}</math> and arrows of <math>\mathcal{A}</math> to arrows of <math>\mathcal{B}</math> such that, if <math>f : A \to A',</math> then <math>F(f) : F(A) \to F(A').</math>  Moreover, a functor preserves identities and composition;  thus:</p>
 
<p>'''Definition 1.3.'''  A ''functor'' <math>F : \mathcal{A} \to \mathcal{B}</math> is first of all a morphism of graphs &hellip;, that is, it sends objects of <math>\mathcal{A}</math> to objects of <math>\mathcal{B}</math> and arrows of <math>\mathcal{A}</math> to arrows of <math>\mathcal{B}</math> such that, if <math>f : A \to A',</math> then <math>F(f) : F(A) \to F(A').</math>  Moreover, a functor preserves identities and composition;  thus:</p>
 
+
|-
 +
|
 
::<p><math>F(1_A) = 1_{F(A)}, \quad F(gf) = F(g)F(f).</math></p>
 
::<p><math>F(1_A) = 1_{F(A)}, \quad F(gf) = F(g)F(f).</math></p>
 
+
|-
 +
|
 
<p>In particular, the identity functor <math>1_\mathcal{A} : \mathcal{A} \to \mathcal{A}</math> leaves objects and arrows unchanged and the composition of functors <math>F : \mathcal{A} \to \mathcal{B}</math> and <math>G : \mathcal{B} \to \mathcal{C}</math> is given by:</p>
 
<p>In particular, the identity functor <math>1_\mathcal{A} : \mathcal{A} \to \mathcal{A}</math> leaves objects and arrows unchanged and the composition of functors <math>F : \mathcal{A} \to \mathcal{B}</math> and <math>G : \mathcal{B} \to \mathcal{C}</math> is given by:</p>
 
+
|-
 +
|
 
::<p><math>(GF)(A) = G(F(A)), \quad (GF)(f) = G(F(f)),</math></p>
 
::<p><math>(GF)(A) = G(F(A)), \quad (GF)(f) = G(F(f)),</math></p>
 
+
|-
 +
|
 
<p>for all objects <math>A\!</math> of <math>\mathcal{A}</math> and all arrows <math>f : A \to A'</math> in <math>\mathcal{A}.</math></p>
 
<p>for all objects <math>A\!</math> of <math>\mathcal{A}</math> and all arrows <math>f : A \to A'</math> in <math>\mathcal{A}.</math></p>
   Line 2,315: Line 2,319:     
===Natural Transformation===
 
===Natural Transformation===
 +
 +
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
 +
|
 +
<p>'''Definition 2.1.'''  Given functors <math>F, G : \mathcal{A} \rightrightarrows \mathcal{B},</math> a ''natural transformation'' <math>t : F \to G</math> is a family of arrows <math>t(A) : F(A) \to G(A)</math> in <math>\mathcal{B},</math> one arrow for each object <math>A\!</math> of <math>\mathcal{A},</math> such that the following square commutes for all arrows <math>f : A \to B</math> in <math>\mathcal{A}</math>:</p>
    
<pre>
 
<pre>
| Definition 2.1.  Given functors F, G : $A$ -> $B$,
+
 
| a 'natural transformation' t : F -> G is a family
+
                  t(A)
| of arrows t(A) : F(A) -> G(A) in $B$, one arrow for
+
    F(A) o------------------>o G(A)
| each object A of $A$, such that the following square
+
          |                  |
| commutes for all arrows f : A -> B in $A$:
+
          |                  |
|
+
    F(f) |                  | G(f)
|              t(A)
+
          |                  |
| F(A) o------------------>o G(A)
+
          v                  v
|      |                  |
+
    F(B) o------------------>o G(B)
|      |                  |
+
                  t(B)
| F(f) |                  | G(f)
+
 
|      |                  |
  −
|      v                  v
  −
| F(B) o------------------>o G(B)
  −
|              t(B)
  −
|
  −
| that is to say, such that
  −
|
  −
| G(f)t(A)  =  t(B)F(f).
   
</pre>
 
</pre>
   −
===Graph (Review)===
+
<p>that is to say, such that</p>
 
+
|-
<pre>
  −
| We recall (Part 0, Definition 1.2) that, for categories,
  −
| a 'graph' consists of two classes and two mappings
  −
| between them:
   
|
 
|
| o--------------o      source      o--------------o
+
<p><math>G(f)t(A) = t(B)F(f).\!</math></p>
| |              | ----------------> |              |
+
|-
| |  Arrows    |                  |  Objects    |
  −
| |              | ----------------> |              |
  −
| o--------------o      target      o--------------o
   
|
 
|
| In graph theory the arrows are usually called "oriented edges"
+
<p>{Lambek & Scott, 8).</p>
| and the objects "nodes" or "vertices", but in various branches
+
|}
| of mathematics other words may be used.  Instead of writing
+
 
 +
===Graph 2===
 +
 
 +
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
 
|
 
|
| source(f)  =  A,
+
<p>We recall &hellip; that, for categories, a ''graph'' consists of two classes and two mappings between them:</p>
|
+
 
| target(f)  =  B,
+
<center><pre>
|                                   f
+
 
| one often writes f : A -> B or A ---> B.  We shall
+
o--------------o      source       o--------------o
| look at graphs with additional structure which are
+
|              | ----------------> |              |
| of interest in logic.
+
|   Arrows    |                  |  Objects    |
</pre>
+
|             | ----------------> |             |
 +
o--------------o      target      o--------------o
   −
===Deductive System===
+
</pre></center>
   −
<pre>
+
<p>In graph theory the arrows are usually called ''oriented edges'' and the objects ''nodes'' or ''vertices'', but in various branches of mathematics other words may be used.  Instead of writing</p>
| A 'deductive system' is a graph with a specified arrow
+
|-
 
|
 
|
|          1_A
+
::<p><math>\operatorname{source}(f) = A, \quad \operatorname{target}(f)  =  B,</math></p>
| R1a.  A -----> A,
+
|-
 
|
 
|
| and a binary operation on arrows ('composition')
+
<p>one often writes <math>f : A \to B</math> or <math>A \xrightarrow{~f~} B.</math> We shall look at graphs with additional structure which are of interest in logic.</p>
|
+
 
|          f           g
+
<p>(Lambek & Scott, 47).</p>
|        A ---> B   B ---> C
+
|}
| R1b. ----------------------
  −
|                gf
  −
|              A ----> C
  −
</pre>
     −
===Conjunction Calculus===
+
===Deductive System 2===
   −
<pre>
+
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
| A 'conjunction calculus' is a deductive system dealing with truth and
  −
| conjunction.  Thus we assume that there is given a formula 'T' (= true)
  −
| and a binary operation '&' (= and) for forming the conjunction A & B of
  −
| two given formulas A and B.  Moreover, we specify the following additional
  −
| arrows and rules of inference:
   
|
 
|
|          O_A
+
<p>A ''deductive system'' is a graph with a specified arrow</p>
| R2.    A -----> T,
+
|-
 
|
 
|
|              p1_A,B
+
<p><math>\text{R1a.} \quad A ~\xrightarrow{~1_A~}~ A,</math></p>
| R3a.  A & B --------> A,
+
|-
 
|
 
|
|              p2_A,B
+
<p>and a binary operation on arrows (''composition'')
| R3b.  A & B --------> B,
+
|-
 
|
 
|
|          f           g
+
<p><math>\text{R1b.} \quad \dfrac{~ A ~\xrightarrow{~f~}~ B \quad B ~\xrightarrow{~g~}~ C ~}{A ~\xrightarrow{~gf~}~ C}.</math></p>
|        C ---> A   C ---> B
+
|-
| R3c.  ----------------------.
+
|
|           <f, g>
+
<p>(Lambek & Scott, 47).</p>
|        C --------> A & B
+
|}
</pre>
+
 
 
+
===Conjunction Calculus===
===Positive Intuitionistic Propositional Calculus===
     −
<pre>
+
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
| A 'positive intuitionistic propositional calculus' is a conjunction calculus
  −
| with an additional binary operation '<=' (= if).  Thus, if A and B are formulas,
  −
| so are T, A & B, and A <= B.  (Yes, most people write B => A instead.)  We also
  −
| specify the following new arrow and rule of inference:
   
|
 
|
|                    !e!_A,B
+
<p>A ''conjunction calculus'' is a deductive system dealing with truth and conjunctionThus we assume that there is given a formula <math>\operatorname{T}</math> (&nbsp;=&nbsp;true) and a binary operation <math>\land</math> (&nbsp;=&nbsp;and) for forming the conjunction <math>A \land B</math> of two given formulas <math>A\!</math> and <math>B.\!</math>  Moreover, we specify the following additional arrows and rules of inference:</p>
| R4a.  (A <= B) & B ---------> A,
+
|-
 
|
 
|
|              h
+
<p><math>\begin{array}{ll}
|        C & B ---> A
+
\text{R2.}  & A ~\xrightarrow{~\bigcirc_A~}~ \operatorname{T};
| R4b. ----------------.
+
\\[8pt]
|          h*
+
\text{R3a.} & A \land B ~\xrightarrow{~\pi_{A, B}~}~ A,
|       C ----> A <= B
+
\\[8pt]
 +
\text{R3b.} & A \land B ~\xrightarrow{~\pi'_{A, B}~}~ B,
 +
\\[8pt]
 +
\text{R3c.} & \dfrac{~ C ~\xrightarrow{~f~}~ A \quad C ~\xrightarrow{~g~}~ B ~}{C ~\xrightarrow{~\langle f, g \rangle~}~ A \land B}.
 +
\end{array}</math></p>
 +
|-
 
|
 
|
</pre>
+
<p>(Lambek & Scott, 47&ndash;48).</p>
 +
|}
   −
===Intuitionistic Propositional Calculus===
+
===Positive Intuitionistic Propositional Calculus===
   −
<pre>
+
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
| An 'intuitionistic propositional calculus' is more than a
  −
| positive one;  it requires also falsehood and disjunction,
  −
| that is, a formula 'F' (= false) and an operation 'v' (= or)
  −
| on formulas, together with the following additional arrows:
   
|
 
|
|          []_A
+
<p>A ''positive intuitionistic propositional calculus'' is a conjunction calculus with an additional binary operation <math>\Leftarrow</math> (&nbsp;=&nbsp;if). Thus, if <math>A\!</math> and <math>B\!</math> are formulas, so are <math>\operatorname{T},</math> <math>A \land B,</math> and <math>A \Leftarrow B.</math>  (Yes, most people write <math>B \Rightarrow A</math> instead.)  We also specify the following new arrow and rule of inference.</p>
| R5.   F ------> A,
+
|-
 
|
 
|
|          k1_A,B
+
<p><math>\begin{array}{ll}
| R6a.   A --------> A v B,
+
\text{R4a.} & (A \Leftarrow B) \land B ~\xrightarrow{~\varepsilon_{A, B}~}~ A,
 +
\\[8pt]
 +
\text{R4b.} & \dfrac{~ C \land B ~\xrightarrow{~h~}~ A ~}{~ C ~\xrightarrow{~h^*~}~ A \Leftarrow B ~}.
 +
\end{array}</math></p>
 +
|-
 
|
 
|
|          k2_A,B
+
<p>(Lambek & Scott, 48&ndash;49).</p>
| R6b.  B --------> A v B,
+
|}
|
  −
|                            !z!^C_A,B
  −
| R6c.  (C <= A) & (C <= B) -----------> C <= (A v B).
  −
</pre>
     −
===Classical Propositional Calculus===
+
===Intuitionistic Propositional Calculus===
   −
<pre>
+
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
| If we want 'classical' propositional logic, we must also require:
+
|
 +
<p>An ''intuitionistic propositional calculus'' is more than a positive one;  it requires also falsehood and disjunction, that is, a formula <math>\bot</math> (&nbsp;=&nbsp;false) and an operation <math>\lor</math> (&nbsp;=&nbsp;or) on formulas, together with the following additional arrows:</p>
 +
|-
 
|
 
|
| R7F <= (F <= A) -> A.
+
<p><math>\begin{array}{ll}
</pre>
+
\text{R5.} & \bot ~\xrightarrow{~\Box_A~}~ A;
 +
\\[8pt]
 +
\text{R6a.} & A ~\xrightarrow{~\kappa_{A, B}~}~ A \lor B,
 +
\\[8pt]
 +
\text{R6b.} & B ~\xrightarrow{~\kappa'_{A, B}~}~ A \lor B,
 +
\\[8pt]
 +
\text{R6c.} & (C \Leftarrow A) \land (C \Leftarrow B) ~\xrightarrow{~\zeta^C_{A, B}~}~ C \Leftarrow (A \lor B).
 +
\end{array}</math></p>
 +
|-
 +
|
 +
<p>(Lambek & Scott, 49&ndash;50).</p>
 +
|}
   −
===Category (Review)===
+
===Classical Propositional Calculus===
   −
<pre>
+
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
| A 'category' is a deductive system in which
+
|
| the following equations hold between proofs:
+
<p>If we want ''classical'' propositional logic, we must also require:
 +
|-
 +
|
 +
<p><math>\begin{array}{ll}
 +
\text{R7.} & (\bot \Leftarrow (\bot \Leftarrow A)) \to A.
 +
\end{array}</math></p>
 +
|-
 
|
 
|
| E1.  f 1_A  = f,
+
<p>(Lambek & Scott, 50).</p>
 +
|}
 +
 
 +
===Category 2===
 +
 
 +
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
 
|
 
|
|     1_B f  =  f,
+
<p>A ''category'' is a deductive system in which the following equations hold between proofs:</p>
 +
|-
 
|
 
|
|      (hg)f = h(gf),
+
<p><math>\begin{array}{ll}
 +
\text{E1.} & f 1_A = f, \qquad 1_B f = f, \qquad (hg)f = h(gf),
 +
\\[8pt]
 +
& \text{for all}~ f : A \to B, \quad g : B \to C, \quad h : C \to D.
 +
\end{array}</math></p>
 +
|-
 
|
 
|
| for all f : A -> B, g : B -> C, h : C -> D.
+
<p>(Lambek & Scott, 52).</p>
</pre>
+
|}
    
===Cartesian Category===
 
===Cartesian Category===
   −
<pre>
+
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
| A 'cartesian category' is both a category
  −
| and a conjunction calculus satisfying the
  −
| additional equations:
   
|
 
|
| E2.  f  =  O_A,  for all f : A -> T.
+
<p>A ''cartesian category'' is both a category and a conjunction calculus satisfying the additional equations:</p>
 +
|-
 
|
 
|
| E3a. p1_A,B <f, g= f,
+
<p><math>\begin{array}{ll}
 +
\text{E2.}  & f = \bigcirc_A, \quad \text{for all}~ f : A \to \operatorname{T};
 +
\\[8pt]
 +
\text{E3a.} & \pi^{}_{A,B} \langle f, g \rangle = f,
 +
\\[8pt]
 +
\text{E3b.} & \pi^\prime_{A,B} \langle f, g \rangle = g,
 +
\\[8pt]
 +
\text{E3c.} & \langle \pi^{}_{A,B} h, \pi^\prime_{A,B} h \rangle = h,
 +
\\[8pt]
 +
& \text{for all}~ f : C \to A, \quad g : C \to B, \quad h : C \to A \land B.
 +
\end{array}</math></p>
 +
|-
 
|
 
|
| E3b.  p2_A,B <f, g> =  g,
+
<p>(Lambek & Scott, 52).</p>
|
+
|}
| E3c. <p1_A,B h, p2_A,B h> =  h,
  −
|
  −
| for all f : C -> A, g : C -> B, h : C -> A & B.
  −
</pre>
      
===Cartesian Closed Category===
 
===Cartesian Closed Category===
   −
<pre>
+
{| align="center" cellpadding="8" width="90%" <!--QUOTE-->
| A 'cartesian closed category' is a cartesian category $A$ with
  −
| additional structure R4 satisfying the additional equations:
   
|
 
|
| E4a.  !e!_A,B <h* p1_C,B, p2_C,B>   =  h,
+
<p>A ''cartesian closed category'' is a cartesian category <math>\mathcal{A}</math> with additional structure <math>\text{R4}\!</math> satisfying the additional equations:</p>
 +
|-
 
|
 
|
| E4b. (!e!_A,B <k p1_C,B, p2_C,B>)* = k,
+
<p><math>\begin{array}{ll}
 +
\text{E4a.} & \varepsilon^{}_{A,B} \langle h^* \pi^{}_{C,B}, \pi^\prime_{C,B} \rangle = h,
 +
\\[8pt]
 +
\text{E4b.} & (\varepsilon^{}_{A,B} \langle k \pi^{}_{C,B}, \pi^\prime_{C,B} \rangle)^* = k,
 +
\\[8pt]
 +
& \text{for all}~ h : C \land B \to A \quad \text{and} \quad k : C \to (A \Leftarrow B).
 +
\end{array}</math></p>
 +
|-
 
|
 
|
| for all h : C & B -> A,  k : C -> (A <= B).
+
<p>Thus, a cartesian closed category is a positive intuitionistic propositional calculus satisfying the equations <math>\text{E1}\!</math> to <math>\text{E4}.\!</math>  This illustrates the general principle that one may obtain interesting categories from deductive systems by imposing an appropriate equivalence relation on proofs.</p>
|
+
 
| Thus, a cartesian closed category is
+
<p>(Lambek & Scott, 53).</p>
| a positive intuitionistic propositional
+
|}
| calculus satisfying the equations E1 to E4.
  −
| This illustrates the general principle that
  −
| one may obtain interesting categories from
  −
| deductive systems by imposing an appropriate
  −
| equivalence relation on proofs.
  −
</pre>
      
==Document History==
 
==Document History==
Line 2,589: Line 2,609:  
# http://stderr.org/pipermail/inquiry/2005-July/002895.html
 
# http://stderr.org/pipermail/inquiry/2005-July/002895.html
 
# http://stderr.org/pipermail/inquiry/2005-July/002896.html
 
# http://stderr.org/pipermail/inquiry/2005-July/002896.html
 +
 +
[[Category:Combinator Calculus]]
 +
[[Category:Combinatory Logic]]
 +
[[Category:Computer Science]]
 +
[[Category:Graph Theory]]
 +
[[Category:Lambda Calculus]]
 +
[[Category:Logic]]
 +
[[Category:Logical Graphs]]
 +
[[Category:Mathematics]]
 +
[[Category:Programming Languages]]
 +
[[Category:Type Theory]]
12,080

edits

Navigation menu