Changes

MyWikiBiz, Author Your Legacy — Sunday April 28, 2024
Jump to navigationJump to search
Line 3,297: Line 3,297:  
==Note 17==
 
==Note 17==
   −
<pre>
+
So long as we're in the neighborhood, we might as well take in some more of the sights, for instance, the smallest example of a non-abelian (non-commutative) group.  This is a group of six elements, say, <math>G = \{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h}, \operatorname{i}, \operatorname{j} \},\!</math> with no relation to any other employment of these six symbols being implied, of course, and it can be most easily represented as the permutation group on a set of three letters, say, <math>X = \{ a, b, c \},\!</math> usually notated as <math>G = \operatorname{Sym}(X)</math> or more abstractly and briefly, as <math>\operatorname{Sym}(3)</math> or <math>S_3.\!</math>  The next Table shows the intended correspondence between abstract group elements and the permutation or substitution operations in <math>\operatorname{Sym}(X).</math>
So long as we're in the neighborhood, we might as well take in
+
 
some more of the sights, for instance, the smallest example of
+
<br>
a non-abelian (non-commutative) group.  This is a group of six
+
 
elements, say, G = {e, f, g, h, i, j}, with no relation to any
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
other employment of these six symbols being implied, of course,
+
|+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ a, b, c \}</math>
and it can be most easily represented as the permutation group
+
|- style="background:#f0f0ff"
on a set of three letters, say, X = {a, b, c}, usually notated
+
| width="16%" | <math>\operatorname{e}</math>
as G = Sym(X) or more abstractly and briefly, as Sym(3) or S_3.
+
| width="16%" | <math>\operatorname{f}</math>
Here are the permutation (= substitution) operations in Sym(X):
+
| width="16%" | <math>\operatorname{g}</math>
 +
| width="16%" | <math>\operatorname{h}</math>
 +
| width="16%" | <math>\operatorname{i}</math>
 +
| width="16%" | <math>\operatorname{j}</math>
 +
|-
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
a & b & c
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
c & a & b
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
b & c & a
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
a & c & b
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
c & b & a
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
a & b & c
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
b & a & c
 +
\end{matrix}</math>
 +
|}
   −
Table 17-a.  Permutations or Substitutions in Sym_{a, b, c}
+
<br>
o---------o---------o---------o---------o---------o---------o
  −
|        |        |        |        |        |        |
  −
|    e    |    f    |    g    |    h    |    i    |    j    |
  −
|        |        |        |        |        |        |
  −
o=========o=========o=========o=========o=========o=========o
  −
|        |        |        |        |        |        |
  −
|  a b c  |  a b c  |  a b c  |  a b c  |  a b c  |  a b c  |
  −
|        |        |        |        |        |        |
  −
|  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |
  −
|  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |
  −
|        |        |        |        |        |        |
  −
|  a b c  |  c a b  |  b c a  |  a c b  |  c b a  |  b a c  |
  −
|        |        |        |        |        |        |
  −
o---------o---------o---------o---------o---------o---------o
     −
Here is the operation table for S_3, given in abstract fashion:
+
Here is the operation table for <math>S_3,\!</math> given in abstract fashion:
   −
Table 17-b.  Symmetric Group S_3
+
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Symmetric Group S_3
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
|                        o                       |
+
|                        ^                       |
 
|                    e / \ e                    |
 
|                    e / \ e                    |
 
|                      /  \                      |
 
|                      /  \                      |
Line 3,347: Line 3,389:  
|      j / \  / \  / \  / \  / \  / \ j      |
 
|      j / \  / \  / \  / \  / \  / \ j      |
 
|      /  \ /  \ /  \ /  \ /  \ /  \      |
 
|      /  \ /  \ /  \ /  \ /  \ /  \      |
|      o j  \  j  \  j  \  i  \  h  \  j  o     |
+
|      ( j  \  j  \  j  \  i  \  h  \  j  )     |
 
|      \  / \  / \  / \  / \  / \  /      |
 
|      \  / \  / \  / \  / \  / \  /      |
 
|        \ /  \ /  \ /  \ /  \ /  \ /        |
 
|        \ /  \ /  \ /  \ /  \ /  \ /        |
Line 3,365: Line 3,407:  
|                      \  /                      |
 
|                      \  /                      |
 
|                      \ /                      |
 
|                      \ /                      |
|                        o                       |
+
|                        v                       |
 
|                                                |
 
|                                                |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 +
</pre>
 +
|}
   −
I think that the NKS reader can guess how we might apply
+
By the way, we will meet with the symmetric group <math>S_3\!</math> again when we return to take up the study of Peirce's early paper "On a Class of Multiple Algebras" (CP 3.324&ndash;327), and also his late unpublished work "The Simplest Mathematics" (1902) (CP 4.227&ndash;323), with particular reference to the section that treats of "Trichotomic Mathematics" (CP 4.307&ndash;323).
this group to the space of propositions of type B^3 -> B.
  −
 
  −
By the way, we will meet with the symmetric group S_3 again
  −
when we return to take up the study of Peirce's early paper
  −
"On a Class of Multiple Algebras" (CP 3.324-327), and also
  −
his late unpublished work "The Simplest Mathematics" (1902)
  −
(CP 4.227-323), with particular reference to the section
  −
that treats of "Trichotomic Mathematics" (CP 4.307-323).
  −
</pre>
      
==Note 18==
 
==Note 18==
12,080

edits

Navigation menu