Changes

MyWikiBiz, Author Your Legacy — Saturday April 27, 2024
Jump to navigationJump to search
add cats
Line 1: Line 1:  
{{DISPLAYTITLE:Dynamics And Logic}}
 
{{DISPLAYTITLE:Dynamics And Logic}}
 +
 +
'''Note.'''  Many problems with the sucky MathJax on this page.  The parser apparently reads 4 tildes inside math brackets the way it would in the external wiki environment, in other words, as signature tags. [[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 18:00, 5 December 2014 (UTC)
 +
 
==Note 1==
 
==Note 1==
   Line 84: Line 87:  
& \quad &
 
& \quad &
 
\operatorname{d}p ~\operatorname{or}~ \operatorname{d}q
 
\operatorname{d}p ~\operatorname{or}~ \operatorname{d}q
\end{matrix}</math>
+
\end{matrix}\!</math>
 
|}
 
|}
   Line 133: Line 136:  
<math>\begin{array}{rcc}
 
<math>\begin{array}{rcc}
 
\operatorname{E}X & = & X \times \operatorname{d}X
 
\operatorname{E}X & = & X \times \operatorname{d}X
\end{array}</math>
+
\end{array}\!</math>
 
|}
 
|}
   Line 156: Line 159:  
& = &
 
& = &
 
\{ \texttt{(} \operatorname{d}q \texttt{)},~ \operatorname{d}q \}
 
\{ \texttt{(} \operatorname{d}q \texttt{)},~ \operatorname{d}q \}
\end{array}</math>
+
\end{array}\!</math>
 
|}
 
|}
   −
The interpretations of these new symbols can be diverse, but the easiest
+
The interpretations of these new symbols can be diverse, but the easiest option for now is just to say that <math>\operatorname{d}p\!</math> means "change <math>p\!</math>" and <math>\operatorname{d}q</math> means "change <math>q\!</math>".
option for now is just to say that <math>\operatorname{d}p</math> means "change <math>p\!</math>" and <math>\operatorname{d}q</math> means "change <math>q\!</math>".
      
Drawing a venn diagram for the differential extension <math>\operatorname{E}X = X \times \operatorname{d}X</math> requires four logical dimensions, <math>P, Q, \operatorname{d}P, \operatorname{d}Q,</math> but it is possible to project a suggestion of what the differential features <math>\operatorname{d}p</math> and <math>\operatorname{d}q</math> are about on the 2-dimensional base space <math>X = P \times Q</math> by drawing arrows that cross the boundaries of the basic circles in the venn diagram for <math>X\!,</math> reading an arrow as <math>\operatorname{d}p</math> if it crosses the boundary between <math>p\!</math> and <math>\texttt{(} p \texttt{)}</math> in either direction and reading an arrow as <math>\operatorname{d}q</math> if it crosses the boundary between <math>q\!</math> and <math>\texttt{(} q \texttt{)}</math> in either direction.
 
Drawing a venn diagram for the differential extension <math>\operatorname{E}X = X \times \operatorname{d}X</math> requires four logical dimensions, <math>P, Q, \operatorname{d}P, \operatorname{d}Q,</math> but it is possible to project a suggestion of what the differential features <math>\operatorname{d}p</math> and <math>\operatorname{d}q</math> are about on the 2-dimensional base space <math>X = P \times Q</math> by drawing arrows that cross the boundaries of the basic circles in the venn diagram for <math>X\!,</math> reading an arrow as <math>\operatorname{d}p</math> if it crosses the boundary between <math>p\!</math> and <math>\texttt{(} p \texttt{)}</math> in either direction and reading an arrow as <math>\operatorname{d}q</math> if it crosses the boundary between <math>q\!</math> and <math>\texttt{(} q \texttt{)}</math> in either direction.
Line 572: Line 574:  
(p)~q~
 
(p)~q~
 
\\[4pt]
 
\\[4pt]
(p)~~~
+
(p)[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]])
 
\\[4pt]
 
\\[4pt]
 
~p~(q)
 
~p~(q)
 
\\[4pt]
 
\\[4pt]
~~~(q)
+
[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]])(q)
 
\\[4pt]
 
\\[4pt]
 
(p,~q)
 
(p,~q)
Line 679: Line 681:  
((p,~q))
 
((p,~q))
 
\\[4pt]
 
\\[4pt]
~~~~~q~~
+
17:54, 5 December 2014 (UTC)q~~
 
\\[4pt]
 
\\[4pt]
 
~(p~(q))
 
~(p~(q))
 
\\[4pt]
 
\\[4pt]
~~p~~~~~
+
~~p17:54, 5 December 2014 (UTC)
 
\\[4pt]
 
\\[4pt]
 
((p)~q)~
 
((p)~q)~
Line 2,631: Line 2,633:  
|}
 
|}
   −
For example, given the set <math>X = \{ a, b, c \},\!</math> suppose that we have the 2-adic relative term <math>\mathit{m} = {}^{\backprime\backprime}\, \text{marker for}\, \underline{~~~~}\, {}^{\prime\prime}</math> and
+
For example, given the set <math>X = \{ a, b, c \},\!</math> suppose that we have the 2-adic relative term <math>\mathit{m} = {}^{\backprime\backprime}\, \text{marker for}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 17:54, 5 December 2014 (UTC)}\, {}^{\prime\prime}</math> and
 
the associated 2-adic relation <math>M \subseteq X \times X,</math> the general pattern of whose common structure is represented by the following matrix:
 
the associated 2-adic relation <math>M \subseteq X \times X,</math> the general pattern of whose common structure is represented by the following matrix:
   Line 2,731: Line 2,733:  
|}
 
|}
   −
Recognizing that <math>a\!:\!a + b\!:\!b + c\!:\!c</math> is the identity transformation otherwise known as <math>\mathit{1},\!</math> the 2-adic relative term <math>m = {}^{\backprime\backprime}\, \text{marker for}\, \underline{~~~~}\, {}^{\prime\prime}</math> can be parsed as an element <math>\mathit{1} + a\!:\!b + b\!:\!c + c\!:\!a</math> of the so-called ''group ring'', all of which makes this element just a special sort of linear transformation.
+
Recognizing that <math>a\!:\!a + b\!:\!b + c\!:\!c</math> is the identity transformation otherwise known as <math>\mathit{1},\!</math> the 2-adic relative term <math>m = {}^{\backprime\backprime}\, \text{marker for}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 17:54, 5 December 2014 (UTC)}\, {}^{\prime\prime}</math> can be parsed as an element <math>\mathit{1} + a\!:\!b + b\!:\!c + c\!:\!a</math> of the so-called ''group ring'', all of which makes this element just a special sort of linear transformation.
    
Up to this point, we are still reading the elementary relatives of the form <math>i\!:\!j</math> in the way that Peirce read them in logical contexts:  <math>i\!</math> is the relate, <math>j\!</math> is the correlate, and in our current example <math>i\!:\!j,</math> or more exactly, <math>m_{ij} = 1,\!</math> is taken to say that <math>i\!</math> is a marker for <math>j.\!</math>  This is the mode of reading that we call "multiplying on the left".
 
Up to this point, we are still reading the elementary relatives of the form <math>i\!:\!j</math> in the way that Peirce read them in logical contexts:  <math>i\!</math> is the relate, <math>j\!</math> is the correlate, and in our current example <math>i\!:\!j,</math> or more exactly, <math>m_{ij} = 1,\!</math> is taken to say that <math>i\!</math> is a marker for <math>j.\!</math>  This is the mode of reading that we call "multiplying on the left".
Line 3,026: Line 3,028:  
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table:
 
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
| align="center" |
+
| <math>\text{Symmetric Group}~ S_3</math>
<pre>
+
|-
Symmetric Group S_3
+
| [[Image:Symmetric Group S(3).jpg|500px]]
o-------------------------------------------------o
  −
|                                                |
  −
|                        ^                        |
  −
|                    e / \ e                    |
  −
|                     /  \                      |
  −
|                     /  e  \                    |
  −
|                  f / \  / \ f                  |
  −
|                  /  \ /  \                  |
  −
|                  /  f  \  f  \                  |
  −
|              g / \  / \  / \ g              |
  −
|                /  \ /  \ /  \                |
  −
|              /  g  \  g  \  g  \              |
  −
|            h / \  / \  / \  / \ h            |
  −
|            /  \ /  \ /  \ /  \            |
  −
|            /  h  \  e  \  e  \  h  \            |
  −
|        i / \  / \  / \  / \  / \ i        |
  −
|          /  \ /  \ /  \ /  \ /  \          |
  −
|        /  i  \  i  \  f  \  j  \  i  \        |
  −
|      j / \  / \  / \  / \  / \  / \ j      |
  −
|      /  \ /  \ /  \ /  \ /  \ /  \      |
  −
|      ( j  \  j  \  j  \  i  \  h  \  j  )     |
  −
|      \  / \  / \  / \  / \  / \  /      |
  −
|        \ /  \ /  \ /  \ /  \ /  \ /        |
  −
|        \  h  \  h  \  e  \  j  \  i  /        |
  −
|          \  / \  / \  / \  / \  /          |
  −
|          \ /  \ /  \ /  \ /  \ /          |
  −
|            \  i  \  g  \  f  \  h  /            |
  −
|            \  / \  / \  / \  /            |
  −
|              \ /  \ /  \ /  \ /              |
  −
|              \  f  \  e  \  g  /              |
  −
|                \  / \  / \  /                |
  −
|                \ /  \ /  \ /                |
  −
|                  \  g  \  f  /                  |
  −
|                  \  / \  /                  |
  −
|                    \ /  \ /                    |
  −
|                    \  e  /                    |
  −
|                      \  /                      |
  −
|                      \ /                      |
  −
|                        v                        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
</pre>
   
|}
 
|}
   Line 3,080: Line 3,040:  
Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators:
 
Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" width="90%"
 
| valign="top" | 1.
 
| valign="top" | 1.
 
| <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math>
 
| <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math>
Line 3,090: Line 3,050:  
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math>  The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin.  This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
 
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math>  The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin.  This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{array}{*{13}{c}}
 
<math>\begin{array}{*{13}{c}}
 
\operatorname{e}
 
\operatorname{e}
Line 3,145: Line 3,105:  
In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math>  The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin.  This produces the ''regular post-representation'' of <math>S_3,\!</math> like so:
 
In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math>  The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin.  This produces the ''regular post-representation'' of <math>S_3,\!</math> like so:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{array}{*{13}{c}}
 
<math>\begin{array}{*{13}{c}}
 
\operatorname{e}
 
\operatorname{e}
Line 3,558: Line 3,518:  
|      /                              \                              |
 
|      /                              \                              |
 
|    /                                \                            |
 
|    /                                \                            |
|    o                                   o                            |
+
|    o                 G                o                            |
 
|    |                                  |                            |
 
|    |                                  |                            |
 
|    |                                  |                            |
 
|    |                                  |                            |
 
|    |                                  |                            |
 
|    |                                  |                            |
|    |                 G                |                            |
+
|    |                       o<---------T---------o                  |
 
|    |                                  |                            |
 
|    |                                  |                            |
 
|    |                                  |                            |
 
|    |                                  |                            |
Line 3,569: Line 3,529:  
|    \                                /                            |
 
|    \                                /                            |
 
|      \                              /                              |
 
|      \                              /                              |
|      \                           T /                              |
+
|      \                             /                              |
|        \             o<------------/-------------o                  |
+
|        \                           /                               |
 
|        \                        /                                |
 
|        \                        /                                |
 
|          \                      /                                  |
 
|          \                      /                                  |
Line 3,932: Line 3,892:  
# http://forum.wolframscience.com/showthread.php?postid=1602#post1602
 
# http://forum.wolframscience.com/showthread.php?postid=1602#post1602
 
# http://forum.wolframscience.com/showthread.php?postid=1603#post1603
 
# http://forum.wolframscience.com/showthread.php?postid=1603#post1603
 +
 +
[[Category:Artificial Intelligence]]
 +
[[Category:Boolean Algebra]]
 +
[[Category:Boolean Functions]]
 +
[[Category:Charles Sanders Peirce]]
 +
[[Category:Combinatorics]]
 +
[[Category:Computational Complexity]]
 +
[[Category:Computer Science]]
 +
[[Category:Cybernetics]]
 +
[[Category:Differential Logic]]
 +
[[Category:Equational Reasoning]]
 +
[[Category:Formal Languages]]
 +
[[Category:Formal Systems]]
 +
[[Category:Graph Theory]]
 +
[[Category:Inquiry]]
 +
[[Category:Inquiry Driven Systems]]
 +
[[Category:Knowledge Representation]]
 +
[[Category:Logic]]
 +
[[Category:Logical Graphs]]
 +
[[Category:Mathematics]]
 +
[[Category:Philosophy]]
 +
[[Category:Propositional Calculus]]
 +
[[Category:Semiotics]]
 +
[[Category:Visualization]]
12,080

edits

Navigation menu