Changes

MyWikiBiz, Author Your Legacy — Thursday May 02, 2024
Jump to navigationJump to search
no edit summary
Line 1: Line 1: −
{{DISPLAYTITLE:Differential Logic : Sketch 2}}
+
{{DISPLAYTITLE:Differential Logic}}
 +
<center><font color="red" size="4">
 +
'''&#9734; The MathJax formatter is currently having problems rendering the text below. &#9734;'''<br>
 +
'''&#9734; Meanwhile, please see the InterSciWiki copy at [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Sketch_2 Differential Logic : Sketch 2]. &#9734;'''
 +
</font></center>
 +
 
 
'''Author: [[User:Jon Awbrey|Jon Awbrey]]'''
 
'''Author: [[User:Jon Awbrey|Jon Awbrey]]'''
    
'''Note.'''  ''The present Sketch is largely superseded by the article &ldquo;[[Differential Logic : Introduction]]&rdquo; but I have preserved it here for the sake of the remaining ideas that have yet to be absorbed elsewhere.''
 
'''Note.'''  ''The present Sketch is largely superseded by the article &ldquo;[[Differential Logic : Introduction]]&rdquo; but I have preserved it here for the sake of the remaining ideas that have yet to be absorbed elsewhere.''
   −
'''Differential logic''' is the component of logic whose object is the description of variation for example, the aspects of change, difference, distribution, and diversity in [[universes of discourse]] that are subject to logical description.  In formal logic, differential logic treats the principles that govern the use of a ''differential logical calculus'', that is, a formal system with the expressive capacity to describe change and diversity in logical universes of discourse.
+
'''Differential logic''' is the component of logic whose object is the description of variation &mdash; for example, the aspects of change, difference, distribution, and diversity &mdash; in [[universes of discourse]] that are subject to logical description.  In formal logic, differential logic treats the principles that govern the use of a ''differential logical calculus'', that is, a formal system with the expressive capacity to describe change and diversity in logical universes of discourse.
    
A simple example of a differential logical calculus is furnished by a ''[[differential propositional calculus]]''.  A differential propositional calculus is a [[propositional calculus]] extended by a set of terms for describing aspects of change and difference, for example, processes that take place in a universe of discourse or transformations that map a source universe into a target universe.  This augments ordinary propositional calculus in the same way that the differential calculus of Leibniz and Newton augments the analytic geometry of Descartes.
 
A simple example of a differential logical calculus is furnished by a ''[[differential propositional calculus]]''.  A differential propositional calculus is a [[propositional calculus]] extended by a set of terms for describing aspects of change and difference, for example, processes that take place in a universe of discourse or transformations that map a source universe into a target universe.  This augments ordinary propositional calculus in the same way that the differential calculus of Leibniz and Newton augments the analytic geometry of Descartes.
Line 966: Line 971:  
((x,~y))
 
((x,~y))
 
\\[4pt]
 
\\[4pt]
22:03, 8 December 2014 (UTC)y~~
+
16:08, 11 December 2014 (UTC)y~~
 
\\[4pt]
 
\\[4pt]
 
~(x~(y))
 
~(x~(y))
 
\\[4pt]
 
\\[4pt]
~~x22:03, 8 December 2014 (UTC)
+
~~x16:08, 11 December 2014 (UTC)
 
\\[4pt]
 
\\[4pt]
 
((x)~y)~
 
((x)~y)~
Line 3,093: Line 3,098:  
|}
 
|}
   −
So, for example, let us suppose that we have the small universe <math>\{ \mathrm{A}, \mathrm{B}, \mathrm{C} \},\!</math> and the 2-adic relation <math>\mathit{m} = {}^{\backprime\backprime}\, \text{mover of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 22:03, 8 December 2014 (UTC)}\, {}^{\prime\prime}\!</math> that is represented by the following matrix:
+
So, for example, let us suppose that we have the small universe <math>\{ \mathrm{A}, \mathrm{B}, \mathrm{C} \},\!</math> and the 2-adic relation <math>\mathit{m} = {}^{\backprime\backprime}\, \text{mover of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 16:08, 11 December 2014 (UTC)}\, {}^{\prime\prime}\!</math> that is represented by the following matrix:
    
{| align="center" cellspacing="10"
 
{| align="center" cellspacing="10"
Line 3,231: Line 3,236:  
Back to our current subinstance, the example in support of our first example.  I will try to reconstruct it in a less confusing way.
 
Back to our current subinstance, the example in support of our first example.  I will try to reconstruct it in a less confusing way.
   −
Consider the universe of discourse <math>\mathbf{1} = \mathrm{A} + \mathrm{B} + \mathrm{C}\!</math> and the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 22:03, 8 December 2014 (UTC)}\, {}^{\prime\prime},\!</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>".  That interpretation is not important, it's just for the sake of intuition.  In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix:
+
Consider the universe of discourse <math>\mathbf{1} = \mathrm{A} + \mathrm{B} + \mathrm{C}\!</math> and the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 16:08, 11 December 2014 (UTC)}\, {}^{\prime\prime},\!</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>".  That interpretation is not important, it's just for the sake of intuition.  In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix:
    
{| align="center" cellspacing="10"
 
{| align="center" cellspacing="10"
Line 3,310: Line 3,315:  
|}
 
|}
   −
Recognizing <math>\mathit{1} = \mathrm{A}\!:\!\mathrm{A} + \mathrm{B}\!:\!\mathrm{B} + \mathrm{C}\!:\!\mathrm{C}\!</math> to be the identity transformation, the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 22:03, 8 December 2014 (UTC)}\, {}^{\prime\prime}\!</math> may be represented by an element <math>\mathit{1} + \mathrm{A}\!:\!\mathrm{B} + \mathrm{B}\!:\!\mathrm{C} + \mathrm{C}\!:\!\mathrm{A}\!</math> of the so-called ''group ring'', all of which just makes this element a special sort of linear transformation.
+
Recognizing <math>\mathit{1} = \mathrm{A}\!:\!\mathrm{A} + \mathrm{B}\!:\!\mathrm{B} + \mathrm{C}\!:\!\mathrm{C}\!</math> to be the identity transformation, the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 16:08, 11 December 2014 (UTC)}\, {}^{\prime\prime}\!</math> may be represented by an element <math>\mathit{1} + \mathrm{A}\!:\!\mathrm{B} + \mathrm{B}\!:\!\mathrm{C} + \mathrm{C}\!:\!\mathrm{A}\!</math> of the so-called ''group ring'', all of which just makes this element a special sort of linear transformation.
    
Up to this point, we're still reading the elementary relatives of the form <math>I:J\!</math> in the way that Peirce reads them in logical contexts: <math>I\!</math> is the relate, <math>J\!</math> is the correlate, and in our current example we read <math>I:J,\!</math> or more exactly, <math>\mathit{n}_{ij} = 1,\!</math> to say that <math>I\!</math> is a noder of <math>J.\!</math>  This is the mode of reading that we call ''multiplying on the left''.
 
Up to this point, we're still reading the elementary relatives of the form <math>I:J\!</math> in the way that Peirce reads them in logical contexts: <math>I\!</math> is the relate, <math>J\!</math> is the correlate, and in our current example we read <math>I:J,\!</math> or more exactly, <math>\mathit{n}_{ij} = 1,\!</math> to say that <math>I\!</math> is a noder of <math>J.\!</math>  This is the mode of reading that we call ''multiplying on the left''.
12,080

edits

Navigation menu