Changes

Line 1,452: Line 1,452:  
==Note 19==
 
==Note 19==
   −
===Computation Summary : <math>g(u, v) = \texttt{((u,~v))}</math>===
+
===Computation Summary : <math>g(u, v) = \texttt{((u, v))}</math>===
   −
Figure&nbsp;2.1 shows the expansion of <math>g = \texttt{((u,~v))}</math> over <math>[u, v]\!</math> to produce the expression:
+
Figure&nbsp;2.1 shows the expansion of <math>g = \texttt{((u, v))}</math> over <math>[u, v]\!</math> to produce the expression:
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 1,460: Line 1,460:  
|}
 
|}
   −
Figure&nbsp;2.2 shows the expansion of <math>\operatorname{E}g = \texttt{((u + du, ~v + dv))}</math> over <math>[u, v]\!</math> to produce the expression:
+
Figure&nbsp;2.2 shows the expansion of <math>\operatorname{E}g = \texttt{((u + du, v + dv))}</math> over <math>[u, v]\!</math> to produce the expression:
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
| <math>\texttt{uv} \cdot \texttt{((du, dv))} + \texttt{u(v)} \cdot \texttt{(du, dv)} + \texttt{(u)v} \cdot \texttt{(du, dv)} + \texttt{(u)(v)} \cdot \texttt{((du, dv))}</math>
 
| <math>\texttt{uv} \cdot \texttt{((du, dv))} + \texttt{u(v)} \cdot \texttt{(du, dv)} + \texttt{(u)v} \cdot \texttt{(du, dv)} + \texttt{(u)(v)} \cdot \texttt{((du, dv))}</math>
 
|}
 
|}
 +
 +
<math>\operatorname{E}g</math> tells you what you would have to do, from where you are in the universe <math>[u, v],\!</math> if you want to end up in a place where <math>g\!</math> is true.  In this case, where the prevailing proposition <math>g\!</math> is <math>\texttt{((u, v))},</math> the component <math>\texttt{uv} \cdot \texttt{((du, dv))}</math> of <math>\operatorname{E}g</math> tells you this:  If <math>u\!</math> and <math>v\!</math> are both true where you are, then change either both or neither of <math>u\!</math> and <math>v\!</math> at the same time, and you will attain a place where <math>\texttt{((du, dv))}</math> is true.
    
<pre>
 
<pre>
Eg tells you what you would have to do, from where you are in the
  −
universe [u, v], if you want to end up in a place where g is true.
  −
In this case, where the prevailing proposition g is ((u, v)), the
  −
component uv((du, dv)) of Eg tells you this:  If u and v are both
  −
true where you are, then change either both or neither u and v at
  −
the same time, and you will attain a place where ((u, v)) is true.
  −
   
Figure 2.3 expands Dg over [u, v] to obtain the following formula:
 
Figure 2.3 expands Dg over [u, v] to obtain the following formula:
 
Dg = uv (du, dv) + u(v)(du, dv) + (u)v (du, dv) + (u)(v) (du, dv).
 
Dg = uv (du, dv) + u(v)(du, dv) + (u)v (du, dv) + (u)(v) (du, dv).
12,080

edits