Line 7: |
Line 7: |
| With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions: | | With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ <math>\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}</math> | | |+ <math>\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}</math> |
| | | | | |
| <math>\begin{array}{clcl} | | <math>\begin{array}{clcl} |
− | \mathrm{A} & | + | \mathrm{A} |
− | \mathrm{Universal~Affirmative} & | + | & \mathrm{Universal~Affirmative} |
− | \mathrm{All}\ u\ \mathrm{is}\ v & | + | & \mathrm{All} ~ u ~ \mathrm{is} ~ v |
− | \mathrm{Indicator~of}\ u (v) = 0 \\ | + | & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 0 |
− | \mathrm{E} & | + | \\ |
− | \mathrm{Universal~Negative} & | + | \mathrm{E} |
− | \mathrm{All}\ u\ \mathrm{is}\ (v) & | + | & \mathrm{Universal~Negative} |
− | \mathrm{Indicator~of}\ u \cdot v = 0 \\ | + | & \mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} |
− | \mathrm{I} & | + | & \mathrm{Indicator~of} ~ u \cdot v = 0 |
− | \mathrm{Particular~Affirmative} & | + | \\ |
− | \mathrm{Some}\ u\ \mathrm{is}\ v & | + | \mathrm{I} |
− | \mathrm{Indicator~of}\ u \cdot v = 1 \\ | + | & \mathrm{Particular~Affirmative} |
− | \mathrm{O} & | + | & \mathrm{Some} ~ u ~ \mathrm{is} ~ v |
− | \mathrm{Particular~Negative} & | + | & \mathrm{Indicator~of} ~ u \cdot v = 1 |
− | \mathrm{Some}\ u\ \mathrm{is}\ (v) & | + | \\ |
− | \mathrm{Indicator~of}\ u (v) = 1 \\ | + | \mathrm{O} |
| + | & \mathrm{Particular~Negative} |
| + | & \mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)} |
| + | & \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 1 |
| \end{array}</math> | | \end{array}</math> |
| |} | | |} |