Line 515: |
Line 515: |
| |} | | |} |
| | | |
− | Expressing it another way, we may also write:
| + | To express it another way: |
| | | |
| {| align="center" cellpadding="8" style="text-align:center" | | {| align="center" cellpadding="8" style="text-align:center" |
| | <math>\Upsilon (e, f) = 1\!</math> | | | <math>\Upsilon (e, f) = 1\!</math> |
| | <math>\Leftrightarrow</math> | | | <math>\Leftrightarrow</math> |
− | | <math>\underline{(e (f))} = \underline{1}.</math> | + | | <math>\texttt{(} e \texttt{(} f \texttt{))} = 1</math> |
| |} | | |} |
| | | |
− | In writing this, however, it is important to notice that the 1's appearing on the left and right have different meanings. Filling in the details, we have: | + | In writing this, however, it is important to notice that the <math>1\!</math> appearing on the left side and the <math>1\!</math> appearing on the right side of the logical equivalence have different meanings. Filling in the details, we have: |
| | | |
| {| align="center" cellpadding="8" style="text-align:center" | | {| align="center" cellpadding="8" style="text-align:center" |
| | <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math> | | | <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math> |
| | <math>\Leftrightarrow</math> | | | <math>\Leftrightarrow</math> |
− | | <math>\underline{(e (f))} = 1 : \langle u, v \rangle \to \mathbb{B}.</math> | + | | <math>\texttt{(} e \texttt{(} f \texttt{))} = 1 : \langle u, v \rangle \to \mathbb{B}</math> |
| |} | | |} |
| | | |