Changes

add exposition
Line 8: Line 8:  
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\texttt{(~)}
+
\texttt{()}
 
& = & 0
 
& = & 0
 
& = & \operatorname{false}
 
& = & \operatorname{false}
Line 24: Line 24:  
& = & x^\prime y z \lor x y^\prime z \lor x y z^\prime
 
& = & x^\prime y z \lor x y^\prime z \lor x y z^\prime
 
\end{matrix}</math>
 
\end{matrix}</math>
 +
|}
 +
 +
Expressing the general case of <math>\nu_k\!</math> in terms of familiar operations is facilitated by making a preliminary definition.
 +
 +
'''Definition.'''  Let the function <math>\lnot_j : \mathbb{B}^k \to \mathbb{B},</math> for each integer <math>j \in [1, k],</math> be defined by the following equation:
 +
 +
{| align="center" cellpadding="8" width="90%"
 +
| <math>\lnot_j (x_1, \ldots, x_j, \ldots, x_k) ~=~ x_1 \land \ldots \land x_{j-1} \land \lnot x_j \land x_{j+1} \land \ldots \land x_k.</math>
 +
|}
 +
 +
Then <math>\nu_k : \mathbb{B}^k \to \mathbb{B}</math> is defined by the following equation:
 +
 +
{| align="center" cellpadding="8" width="90%"
 +
| <math>\nu_k (x_1, \ldots, x_k) ~=~ \lnot_1 (x_1, \ldots, x_k) \lor \ldots \lor \lnot_j (x_1, \ldots, x_k) \lor \ldots \lor \lnot_k (x_1, \ldots, x_k).</math>
 
|}
 
|}
  
12,080

edits