Line 1,368: |
Line 1,368: |
| Under <math>\operatorname{Ex}</math> we have the following interpretations: | | Under <math>\operatorname{Ex}</math> we have the following interpretations: |
| | | |
− | : ''e''<sub>0</sub> expresses the logical constant "false"
| + | {| align="center" cellpadding="8" width="90%" |
| + | | <math>e_0 = {}^{\backprime\backprime} \texttt{(~)} {}^{\prime\prime}</math> expresses the logical constant <math>\operatorname{false}.</math> |
| + | |- |
| + | | <math>e_1 = {}^{\backprime\backprime} \texttt{~} {}^{\prime\prime}</math> expresses the logical constant <math>\operatorname{true}.</math> |
| + | |- |
| + | | <math>e_2 = {}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}</math> says <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ q,</math> <math>\operatorname{and~not}~ p ~\operatorname{without}~ r {}^{\prime\prime}.</math> |
| + | |- |
| + | | <math>e_3 = {}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}</math> says <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ q ~\operatorname{and}~ r {}^{\prime\prime}.</math> |
| + | |- |
| + | | <math>e_4 = {}^{\backprime\backprime} \texttt{(} p~q~r \texttt{~,~(} p \texttt{))} {}^{\prime\prime}</math> says <math>{}^{\backprime\backprime} p ~\operatorname{and}~ q ~\operatorname{and}~ r,</math> <math>~\operatorname{or~else~not}~ p{}^{\prime\prime}.</math> |
| + | |- |
| + | | <math>e_5 = {}^{\backprime\backprime} \texttt{((~(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))~,~(} p \texttt{~(} q~r \texttt{))~))} {}^{\prime\prime}</math> says that <math>e_2\!</math> and <math>e_3\!</math> say the same thing. |
| + | |} |
| | | |
− | : ''e''<sub>1</sub> expresses the logical constant "true"
| + | We took up the Equation <math>E_1\!</math> that reads as follows: |
− | | |
− | : ''e''<sub>2</sub> says "not p without q, and not p without r"
| |
− | | |
− | : ''e''<sub>3</sub> says "not p without q and r"
| |
− | | |
− | : ''e''<sub>4</sub> says "p and q and r, or else not p"
| |
− | | |
− | : ''e''<sub>5</sub> says that ''e''<sub>2</sub> and ''e''<sub>3</sub> say the same thing
| |
− | | |
− | We took up the Equation ''E''<sub>1</sub> that reads as follows: | |
| | | |
| : (p (q))(p (r)) = (p (q r)). | | : (p (q))(p (r)) = (p (q r)). |