This can be read to say <math>{}^{\backprime\backprime} \operatorname{either}~ p q r ~\operatorname{or}~ \operatorname{not}~ p {}^{\prime\prime},</math> which gives us yet another equivalent for the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> and the expression <math>\texttt{(} p \texttt{(} q r \texttt{))}.</math> Still another way of writing the same thing would be as follows: | This can be read to say <math>{}^{\backprime\backprime} \operatorname{either}~ p q r ~\operatorname{or}~ \operatorname{not}~ p {}^{\prime\prime},</math> which gives us yet another equivalent for the expression <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))}</math> and the expression <math>\texttt{(} p \texttt{(} q r \texttt{))}.</math> Still another way of writing the same thing would be as follows: |