The easiest way to see the sense of the venn diagram is to notice that the expression <math>\texttt{(} p \texttt{(} q \texttt{))},</math> read as <math>p \Rightarrow q,</math> can also be read as <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ q {}^{\prime\prime}.</math> Its assertion effectively excludes any tincture of truth from the region of <math>P\!</math> that lies outside the region <math>Q.\!</math> In a similar manner, the expression <math>\texttt{(} p \texttt{(} r \texttt{))},</math> read as <math>p \Rightarrow r,</math> can also be read as <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ r {}^{\prime\prime}.</math> Asserting it effectively excludes any tincture of truth from the region of <math>P\!</math> that lies outside the region <math>R.\!</math> | The easiest way to see the sense of the venn diagram is to notice that the expression <math>\texttt{(} p \texttt{(} q \texttt{))},</math> read as <math>p \Rightarrow q,</math> can also be read as <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ q {}^{\prime\prime}.</math> Its assertion effectively excludes any tincture of truth from the region of <math>P\!</math> that lies outside the region <math>Q.\!</math> In a similar manner, the expression <math>\texttt{(} p \texttt{(} r \texttt{))},</math> read as <math>p \Rightarrow r,</math> can also be read as <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ r {}^{\prime\prime}.</math> Asserting it effectively excludes any tincture of truth from the region of <math>P\!</math> that lies outside the region <math>R.\!</math> |