Line 1: |
Line 1: |
| ==Place for Discussion== | | ==Place for Discussion== |
| + | |
| + | … |
| + | |
| + | ==Work Area== |
| + | |
| + | <pre> |
| + | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o |
| + | |
| + | TOP. Expository Note 13 |
| + | |
| + | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o |
| + | |
| + | 3.3. Logical Cacti |
| + | |
| + | Up till now we've been working to hammer out a two-edged sword of syntax, |
| + | honing the syntax of "painted and rooted cacti and expressions" (PARCAE), |
| + | and turning it to use in taming the syntax of two-level formal languages. |
| + | |
| + | But the purpose of a logical syntax is to support a logical semantics, |
| + | which means, for starters, to bear interpretation as sentential signs |
| + | that can denote objective propositions about some universe of objects. |
| + | |
| + | One of the difficulties that we face in this discussion is that the |
| + | words "interpretation", "meaning", "semantics", and so on will have |
| + | so many different meanings from one moment to the next of their use. |
| + | A dedicated neologician might be able to think up distinctive names |
| + | for all of the aspects of meaning and all of the approaches to them |
| + | that will concern us here, but I will just have to do the best that |
| + | I can with the common lot of ambiguous terms, leaving it to context |
| + | and the intelligent interpreter to sort it out as much as possible. |
| + | |
| + | As it happens, the language of cacti is so abstract that it can bear |
| + | at least two different interpretations as logical sentences denoting |
| + | logical propositions. The two interpretations that I know about are |
| + | descended from the ones that C.S. Peirce called the "entitative" and |
| + | the "existential" interpretations of his systems of graphical logics. |
| + | For our present aims, I shall briefly introduce the alternatives and |
| + | then quickly move to the existential interpretation of logical cacti. |
| + | |
| + | Table 13 illustrates the "existential interpretation" |
| + | of cactus graphs and cactus expressions by providing |
| + | English translations for a few of the most basic and |
| + | commonly occurring forms. |
| + | |
| + | Table 13. The Existential Interpretation |
| + | o----o-------------------o-------------------o-------------------o |
| + | | Ex | Cactus Graph | Cactus Expression | Existential | |
| + | | | | | Interpretation | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | 1 | @ | " " | true. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | o | | | |
| + | | | | | | | |
| + | | 2 | @ | ( ) | untrue. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a | | | |
| + | | 3 | @ | a | a. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a | | | |
| + | | | o | | | |
| + | | | | | | | |
| + | | 4 | @ | (a) | not a. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | 5 | @ | a b c | a and b and c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | | o o o | | | |
| + | | | \|/ | | | |
| + | | | o | | | |
| + | | | | | | | |
| + | | 6 | @ | ((a)(b)(c)) | a or b or c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | | | a implies b. | |
| + | | | a b | | | |
| + | | | o---o | | if a then b. | |
| + | | | | | | | |
| + | | 7 | @ | ( a (b)) | no a sans b. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b | | | |
| + | | | o---o | | a exclusive-or b. | |
| + | | | \ / | | | |
| + | | 8 | @ | ( a , b ) | a not equal to b. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b | | | |
| + | | | o---o | | | |
| + | | | \ / | | | |
| + | | | o | | a if & only if b. | |
| + | | | | | | | |
| + | | 9 | @ | (( a , b )) | a equates with b. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | | o--o--o | | | |
| + | | | \ / | | | |
| + | | | \ / | | just one false | |
| + | | 10 | @ | ( a , b , c ) | out of a, b, c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | | o o o | | | |
| + | | | | | | | | | |
| + | | | o--o--o | | | |
| + | | | \ / | | | |
| + | | | \ / | | just one true | |
| + | | 11 | @ | ((a),(b),(c)) | among a, b, c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | | | genus a over | |
| + | | | b c | | species b, c. | |
| + | | | o o | | | |
| + | | | a | | | | partition a | |
| + | | | o--o--o | | among b & c. | |
| + | | | \ / | | | |
| + | | | \ / | | whole pie a: | |
| + | | 12 | @ | ( a ,(b),(c)) | slices b, c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | |
| + | Table 14 illustrates the "entitative interpretation" |
| + | of cactus graphs and cactus expressions by providing |
| + | English translations for a few of the most basic and |
| + | commonly occurring forms. |
| + | |
| + | Table 14. The Entitative Interpretation |
| + | o----o-------------------o-------------------o-------------------o |
| + | | En | Cactus Graph | Cactus Expression | Entitative | |
| + | | | | | Interpretation | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | 1 | @ | " " | untrue. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | o | | | |
| + | | | | | | | |
| + | | 2 | @ | ( ) | true. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a | | | |
| + | | 3 | @ | a | a. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a | | | |
| + | | | o | | | |
| + | | | | | | | |
| + | | 4 | @ | (a) | not a. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | 5 | @ | a b c | a or b or c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | | o o o | | | |
| + | | | \|/ | | | |
| + | | | o | | | |
| + | | | | | | | |
| + | | 6 | @ | ((a)(b)(c)) | a and b and c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | | | a implies b. | |
| + | | | | | | |
| + | | | o a | | if a then b. | |
| + | | | | | | | |
| + | | 7 | @ b | (a) b | not a, or b. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b | | | |
| + | | | o---o | | a if & only if b. | |
| + | | | \ / | | | |
| + | | 8 | @ | ( a , b ) | a equates with b. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b | | | |
| + | | | o---o | | | |
| + | | | \ / | | | |
| + | | | o | | a exclusive-or b. | |
| + | | | | | | | |
| + | | 9 | @ | (( a , b )) | a not equal to b. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | | o--o--o | | | |
| + | | | \ / | | | |
| + | | | \ / | | not just one true | |
| + | | 10 | @ | ( a , b , c ) | out of a, b, c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a b c | | | |
| + | | | o--o--o | | | |
| + | | | \ / | | | |
| + | | | \ / | | | |
| + | | | o | | | |
| + | | | | | | just one true | |
| + | | 11 | @ | (( a , b , c )) | among a, b, c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | | | | | | |
| + | | | a | | | |
| + | | | o | | genus a over | |
| + | | | | b c | | species b, c. | |
| + | | | o--o--o | | | |
| + | | | \ / | | partition a | |
| + | | | \ / | | among b & c. | |
| + | | | o | | | |
| + | | | | | | whole pie a: | |
| + | | 12 | @ | (((a), b , c )) | slices b, c. | |
| + | | | | | | |
| + | o----o-------------------o-------------------o-------------------o |
| + | |
| + | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o |
| + | |
| + | TOP. Expository Note 14 |
| + | |
| + | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o |
| + | |
| + | 3.3. Logical Cacti (cont.) |
| + | |
| + | For the time being, the main things to take away from Tables 13 and 14 are |
| + | the ideas that the compositional structure of cactus graphs and expressions |
| + | can be articulated in terms of two different kinds of connective operations, |
| + | and that there are two distinct ways of mapping this compositional structure |
| + | into the compositional structure of propositional sentences, say, in English: |
| + | |
| + | 1. The "node connective" joins a number of |
| + | component cacti C_1, ..., C_k at a node: |
| + | |
| + | C_1 ... C_k |
| + | @ |
| + | |
| + | 2. The "lobe connective" joins a number of |
| + | component cacti C_1, ..., C_k to a lobe: |
| + | |
| + | C_1 C_2 C_k |
| + | o---o-...-o |
| + | \ / |
| + | \ / |
| + | \ / |
| + | \ / |
| + | @ |
| + | |
| + | Table 15 summarizes the existential and entitative |
| + | interpretations of the primitive cactus structures, |
| + | in effect, the graphical constants and connectives. |
| + | |
| + | Table 15. Existential & Entitative Interpretations of Cactus Structures |
| + | o-----------------o-----------------o-----------------o-----------------o |
| + | | Cactus Graph | Cactus String | Existential | Entitative | |
| + | | | | Interpretation | Interpretation | |
| + | o-----------------o-----------------o-----------------o-----------------o |
| + | | | | | | |
| + | | @ | " " | true | false | |
| + | | | | | | |
| + | o-----------------o-----------------o-----------------o-----------------o |
| + | | | | | | |
| + | | o | | | | |
| + | | | | | | | |
| + | | @ | ( ) | false | true | |
| + | | | | | | |
| + | o-----------------o-----------------o-----------------o-----------------o |
| + | | | | | | |
| + | | C_1 ... C_k | | | | |
| + | | @ | C_1 ... C_k | C_1 & ... & C_k | C_1 v ... v C_k | |
| + | | | | | | |
| + | o-----------------o-----------------o-----------------o-----------------o |
| + | | | | | | |
| + | | C_1 C_2 C_k | | Just one | Not just one | |
| + | | o---o-...-o | | | | |
| + | | \ / | | of the C_j, | of the C_j, | |
| + | | \ / | | | | |
| + | | \ / | | j = 1 to k, | j = 1 to k, | |
| + | | \ / | | | | |
| + | | @ | (C_1, ..., C_k) | is not true. | is true. | |
| + | | | | | | |
| + | o-----------------o-----------------o-----------------o-----------------o |
| + | |
| + | It is possible to specify "abstract rules of equivalence" (AROE's) |
| + | between cacti, rules for transforming one cactus into another that |
| + | are "formal" in the sense of being indifferent to the above choices |
| + | for logical or semantic interpretations, and that partition the set |
| + | of cacti into formal equivalence classes. |
| + | |
| + | A "reduction" is an equivalence transformation |
| + | that is applied in the direction of decreasing |
| + | graphical complexity. |
| + | |
| + | A "basic reduction" is a reduction that applies |
| + | to one of the two families of basic connectives. |
| + | |
| + | Table 16 schematizes the two types of basic reductions |
| + | in a purely formal, interpretation-independent fashion. |
| + | |
| + | Table 16. Basic Reductions |
| + | o---------------------------------------o |
| + | | | |
| + | | C_1 ... C_k | |
| + | | @ = @ | |
| + | | | |
| + | | if and only if | |
| + | | | |
| + | | C_j = @ for all j = 1 to k | |
| + | | | |
| + | o---------------------------------------o |
| + | | | |
| + | | C_1 C_2 C_k | |
| + | | o---o-...-o | |
| + | | \ / | |
| + | | \ / | |
| + | | \ / | |
| + | | \ / | |
| + | | @ = @ | |
| + | | | |
| + | | if and only if | |
| + | | | |
| + | | o | |
| + | | | | |
| + | | C_j = @ for exactly one j in [1, k] | |
| + | | | |
| + | o---------------------------------------o |
| + | |
| + | The careful reader will have noticed that we have begun to use |
| + | graphical paints like "a", "b", "c" and schematic proxies like |
| + | "C_1", "C_j", "C_k" in a variety of novel and unjustified ways. |
| + | |
| + | The careful writer would have already introduced a whole bevy of |
| + | technical concepts and proved a whole crew of formal theorems to |
| + | justify their use before contemplating this stage of development, |
| + | but I have been hurrying to proceed with the informal exposition, |
| + | and this expedition must leave steps to the reader's imagination. |
| + | |
| + | Of course I mean the "active imagination". |
| + | So let me assist the prospective exercise |
| + | with a few hints of what it would take to |
| + | guarantee that these practices make sense. |
| + | |
| + | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o |
| + | </pre> |