Line 172: |
Line 172: |
| following formula: | | following formula: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 185: |
Line 185: |
| In the example <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is computed as follows: | | In the example <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is computed as follows: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 202: |
Line 202: |
| Given the proposition <math>f(p, q)\!</math> over <math>X = P \times Q,</math> the ''(first order) difference'' of <math>f\!</math> is the proposition <math>\operatorname{D}f</math> over <math>\operatorname{E}X</math> that is defined by the formula <math>\operatorname{D}f = \operatorname{E}f - f,</math> or, written out in full: | | Given the proposition <math>f(p, q)\!</math> over <math>X = P \times Q,</math> the ''(first order) difference'' of <math>f\!</math> is the proposition <math>\operatorname{D}f</math> over <math>\operatorname{E}X</math> that is defined by the formula <math>\operatorname{D}f = \operatorname{E}f - f,</math> or, written out in full: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 215: |
Line 215: |
| In the example <math>f(p, q) = pq,\!</math> the difference <math>\operatorname{D}f</math> is computed as follows: | | In the example <math>f(p, q) = pq,\!</math> the difference <math>\operatorname{D}f</math> is computed as follows: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 224: |
Line 224: |
| \texttt{((} p, \operatorname{d}p \texttt{)(} q, \operatorname{d}q \texttt{)}, pq \texttt{)} | | \texttt{((} p, \operatorname{d}p \texttt{)(} q, \operatorname{d}q \texttt{)}, pq \texttt{)} |
| \end{matrix}</math> | | \end{matrix}</math> |
− | |- | + | |} |
− | | align="center" | | + | |
− | <pre>
| + | {| align="center" cellspacing="10" |
− | o-------------------------------------------------o
| + | | [[Image:Cactus Graph Df = ((P,dP)(Q,dQ),PQ).jpg|500px]] |
− | | |
| |
− | | p dp q dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / |
| |
− | | \| |/ p q |
| |
− | | o=o-----------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Df = ((p, dp)(q, dq), pq) | | |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |} | | |} |
| | | |
| We did not yet go through the trouble to interpret this (first order) ''difference of conjunction'' fully, but were happy simply to evaluate it with respect to a single location in the universe of discourse, namely, at the point picked out by the singular proposition <math>pq,\!</math> that is, at the place where <math>p = 1\!</math> and <math>q = 1.\!</math> This evaluation is written in the form <math>\operatorname{D}f|_{pq}</math> or <math>\operatorname{D}f|_{(1, 1)},</math> and we arrived at the locally applicable law that is stated and illustrated as follows: | | We did not yet go through the trouble to interpret this (first order) ''difference of conjunction'' fully, but were happy simply to evaluate it with respect to a single location in the universe of discourse, namely, at the point picked out by the singular proposition <math>pq,\!</math> that is, at the place where <math>p = 1\!</math> and <math>q = 1.\!</math> This evaluation is written in the form <math>\operatorname{D}f|_{pq}</math> or <math>\operatorname{D}f|_{(1, 1)},</math> and we arrived at the locally applicable law that is stated and illustrated as follows: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | align="center" | | | | align="center" | |
| <math>f(p, q) ~=~ pq ~=~ p ~\operatorname{and}~ q \quad \Rightarrow \quad \operatorname{D}f|_{pq} ~=~ \texttt{((} \operatorname{dp} \texttt{)(} \operatorname{d}q \texttt{))} ~=~ \operatorname{d}p ~\operatorname{or}~ \operatorname{d}q</math> | | <math>f(p, q) ~=~ pq ~=~ p ~\operatorname{and}~ q \quad \Rightarrow \quad \operatorname{D}f|_{pq} ~=~ \texttt{((} \operatorname{dp} \texttt{)(} \operatorname{d}q \texttt{))} ~=~ \operatorname{d}p ~\operatorname{or}~ \operatorname{d}q</math> |
Line 264: |
Line 245: |
| The picture shows the analysis of the inclusive disjunction <math>\texttt{((} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{))}</math> into the following exclusive disjunction: | | The picture shows the analysis of the inclusive disjunction <math>\texttt{((} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{))}</math> into the following exclusive disjunction: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |