Line 10: |
Line 10: |
| Let us start with a proposition of the form <math>p ~\operatorname{and}~ q</math> that is graphed as two labels attached to a root node: | | Let us start with a proposition of the form <math>p ~\operatorname{and}~ q</math> that is graphed as two labels attached to a root node: |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Cactus Graph Existential P And Q.jpg|500px]] | | | [[Image:Cactus Graph Existential P And Q.jpg|500px]] |
| |} | | |} |
Line 20: |
Line 20: |
| In this style of graphical representation, the value <math>\operatorname{true}</math> looks like a blank label and the value <math>\operatorname{false}</math> looks like an edge. | | In this style of graphical representation, the value <math>\operatorname{true}</math> looks like a blank label and the value <math>\operatorname{false}</math> looks like an edge. |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Cactus Graph Existential True.jpg|500px]] | | | [[Image:Cactus Graph Existential True.jpg|500px]] |
| |} | | |} |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Cactus Graph Existential False.jpg|500px]] | | | [[Image:Cactus Graph Existential False.jpg|500px]] |
| |} | | |} |
Line 30: |
Line 30: |
| Back to the proposition <math>pq.\!</math> Imagine yourself standing in a fixed cell the corresponding venn diagram, say, the cell where the proposition <math>pq\!</math> is true, as shown in the following Figure: | | Back to the proposition <math>pq.\!</math> Imagine yourself standing in a fixed cell the corresponding venn diagram, say, the cell where the proposition <math>pq\!</math> is true, as shown in the following Figure: |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Venn Diagram P And Q.jpg|500px]] | | | [[Image:Venn Diagram P And Q.jpg|500px]] |
| |} | | |} |
Line 38: |
Line 38: |
| Don't think about it — just compute: | | Don't think about it — just compute: |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Cactus Graph (P,dP)(Q,dQ).jpg|500px]] | | | [[Image:Cactus Graph (P,dP)(Q,dQ).jpg|500px]] |
| |} | | |} |
Line 44: |
Line 44: |
| The cactus formula <math>\texttt{(p, dp)(q, dq)}</math> and its corresponding graph arise by substituting <math>p + \operatorname{d}p</math> for <math>p\!</math> and <math>q + \operatorname{d}q</math> for <math>q\!</math> in the boolean product or logical conjunction <math>pq\!</math> and writing the result in the two dialects of cactus syntax. This follows from the fact that the boolean sum <math>p + \operatorname{d}p</math> is equivalent to the logical operation of exclusive disjunction, which parses to a cactus graph of the following form: | | The cactus formula <math>\texttt{(p, dp)(q, dq)}</math> and its corresponding graph arise by substituting <math>p + \operatorname{d}p</math> for <math>p\!</math> and <math>q + \operatorname{d}q</math> for <math>q\!</math> in the boolean product or logical conjunction <math>pq\!</math> and writing the result in the two dialects of cactus syntax. This follows from the fact that the boolean sum <math>p + \operatorname{d}p</math> is equivalent to the logical operation of exclusive disjunction, which parses to a cactus graph of the following form: |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Cactus Graph (P,dP).jpg|500px]] | | | [[Image:Cactus Graph (P,dP).jpg|500px]] |
| |} | | |} |
Line 51: |
Line 51: |
| proposition <math>pq\!</math> over there, at a distance of <math>\operatorname{d}p</math> and <math>\operatorname{d}q,</math> and the value of the proposition <math>pq\!</math> where you are standing, all expressed in the form of a general formula, of course? Here is the appropriate formulation: | | proposition <math>pq\!</math> over there, at a distance of <math>\operatorname{d}p</math> and <math>\operatorname{d}q,</math> and the value of the proposition <math>pq\!</math> where you are standing, all expressed in the form of a general formula, of course? Here is the appropriate formulation: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" |
− | | align="center" |
| + | | [[Image:Cactus Graph ((P,dP)(Q,dQ),PQ).jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | p dp q dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / |
| |
− | | \| |/ p q |
| |
− | | o=o-----------o | | |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | ((p, dp)(q, dq), p q) |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |} | | |} |
| | | |