Changes

→‎Note 1: convert graphics
Line 14: Line 14:  
|}
 
|}
   −
Written as a string, this is just the concatenation "<math>p~q</math>".
+
Written as a string, this is just the concatenation <math>p~q</math>.
    
The proposition <math>pq\!</math> may be taken as a boolean function <math>f(p, q)\!</math> having the abstract type <math>f : \mathbb{B} \times \mathbb{B} \to \mathbb{B},</math> where <math>\mathbb{B} = \{ 0, 1 \}</math> is read in such a way that <math>0\!</math> means <math>\operatorname{false}</math> and <math>1\!</math> means <math>\operatorname{true}.</math>
 
The proposition <math>pq\!</math> may be taken as a boolean function <math>f(p, q)\!</math> having the abstract type <math>f : \mathbb{B} \times \mathbb{B} \to \mathbb{B},</math> where <math>\mathbb{B} = \{ 0, 1 \}</math> is read in such a way that <math>0\!</math> means <math>\operatorname{false}</math> and <math>1\!</math> means <math>\operatorname{true}.</math>
Line 44: Line 44:  
This expression follows because the expression <math>p + \operatorname{d}p,</math> where the plus sign indicates addition in <math>\mathbb{B},</math> that is, addition modulo 2, and thus corresponds to the exclusive disjunction operation in logic, parses to a graph of the following form:
 
This expression follows because the expression <math>p + \operatorname{d}p,</math> where the plus sign indicates addition in <math>\mathbb{B},</math> that is, addition modulo 2, and thus corresponds to the exclusive disjunction operation in logic, parses to a graph of the following form:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10"
| align="center" |
+
| [[Image:Cactus Graph (P,dP).jpg|500px]]
<pre>
  −
o-------------------------------------------------o
  −
|                                                |
  −
|                    p    dp                    |
  −
|                      o---o                      |
  −
|                      \ /                      |
  −
|                       @                        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
|                    (p, dp)                     |
  −
o-------------------------------------------------o
  −
</pre>
   
|}
 
|}
  
12,080

edits