Changes

→‎Note 23: format table of matrices
Line 4,048: Line 4,048:  
These days one is much more likely to encounter the natural representation of <math>S_3\!</math> in the form of a ''linear representation'', that is, as a family of linear transformations that map the elements of a suitable vector space into each other, all of which would in turn usually be represented by a set of matrices like these:
 
These days one is much more likely to encounter the natural representation of <math>S_3\!</math> in the form of a ''linear representation'', that is, as a family of linear transformations that map the elements of a suitable vector space into each other, all of which would in turn usually be represented by a set of matrices like these:
   −
{| align="center" cellpadding="6" width="90%"
+
<br>
| align="center" |
+
 
<pre>
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
Table 2.  Matrix Representations of Permutations in Sym(3)
+
|+ <math>\text{Matrix Representations of Permutations in}~ \operatorname{Sym}(3)</math>
o---------o---------o---------o---------o---------o---------o
+
|- style="background:#f0f0ff"
|         |         |         |         |         |        |
+
| width="16%" | <math>\operatorname{e}</math>
|   e    |   f    |   g    |   h    |   i    |   j   |
+
| width="16%" | <math>\operatorname{f}</math>
|         |        |        |        |        |        |
+
| width="16%" | <math>\operatorname{g}</math>
o=========o=========o=========o=========o=========o=========o
+
| width="16%" | <math>\operatorname{h}</math>
|        |        |        |        |        |        |
+
| width="16%" | <math>\operatorname{i}</math>
1 0 0 |  0 0 1 | 0 1 0  |  1 0 0 0 0 | 0 1 0 |
+
| width="16%" | <math>\operatorname{j}</math>
0 1 0  |  1 0 0 | 0 0 1  |  0 0 1 0 1 0 |  1 0 0  |
+
|-
0 0 1 0 1 0 1 0 0 | 0 1 0 1 0 0 0 0 1 |
+
|
|        |        |        |        |        |        |
+
<math>\begin{matrix}
o---------o---------o---------o---------o---------o---------o
+
1 & 0 & 0
</pre>
+
\\
 +
0 & 1 & 0
 +
\\
 +
0 & 0 & 1
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 0 & 1
 +
\\
 +
1 & 0 & 0
 +
\\
 +
0 & 1 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 1 & 0
 +
\\
 +
0 & 0 & 1
 +
\\
 +
1 & 0 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
1 & 0 & 0
 +
\\
 +
0 & 0 & 1
 +
\\
 +
0 & 1 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 0 & 1
 +
\\
 +
0 & 1 & 0
 +
\\
 +
1 & 0 & 0
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
0 & 1 & 0
 +
\\
 +
1 & 0 & 0
 +
\\
 +
0 & 0 & 1
 +
\end{matrix}</math>
 
|}
 
|}
 +
 +
<br>
    
The key to the mysteries of these matrices is revealed by noting that their coefficient entries are arrayed and overlaid on a place-mat marked like so:
 
The key to the mysteries of these matrices is revealed by noting that their coefficient entries are arrayed and overlaid on a place-mat marked like so:
12,080

edits