Changes

Line 3,373: Line 3,373:     
In the case of <math>V_4 = (G, \cdot),</math> where <math>G\!</math> is the ''underlying set'' <math>\{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h} \},</math> we have the 3-adic relation <math>L(V_4) \subseteq G \times G \times G</math> whose triples are listed below:
 
In the case of <math>V_4 = (G, \cdot),</math> where <math>G\!</math> is the ''underlying set'' <math>\{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h} \},</math> we have the 3-adic relation <math>L(V_4) \subseteq G \times G \times G</math> whose triples are listed below:
 +
 +
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<math>\begin{matrix}
 +
(\mathrm{e}, \mathrm{e}, \mathrm{e}) &
 +
(\mathrm{e}, \mathrm{f}, \mathrm{f}) &
 +
(\mathrm{e}, \mathrm{g}, \mathrm{g}) &
 +
(\mathrm{e}, \mathrm{h}, \mathrm{h})
 +
\\[6pt]
 +
(\mathrm{f}, \mathrm{e}, \mathrm{f}) &
 +
(\mathrm{f}, \mathrm{f}, \mathrm{e}) &
 +
(\mathrm{f}, \mathrm{g}, \mathrm{h}) &
 +
(\mathrm{f}, \mathrm{h}, \mathrm{g})
 +
\\[6pt]
 +
(\mathrm{g}, \mathrm{e}, \mathrm{g}) &
 +
(\mathrm{g}, \mathrm{f}, \mathrm{h}) &
 +
(\mathrm{g}, \mathrm{g}, \mathrm{e}) &
 +
(\mathrm{g}, \mathrm{h}, \mathrm{f})
 +
\\[6pt]
 +
(\mathrm{h}, \mathrm{e}, \mathrm{h}) &
 +
(\mathrm{h}, \mathrm{f}, \mathrm{g}) &
 +
(\mathrm{h}, \mathrm{g}, \mathrm{f}) &
 +
(\mathrm{h}, \mathrm{h}, \mathrm{e})
 +
\end{matrix}</math>
 +
|}
    
<pre>
 
<pre>
|  <e, e, e>
  −
|  <e, f, f>
  −
|  <e, g, g>
  −
|  <e, h, h>
  −
|
  −
|  <f, e, f>
  −
|  <f, f, e>
  −
|  <f, g, h>
  −
|  <f, h, g>
  −
|
  −
|  <g, e, g>
  −
|  <g, f, h>
  −
|  <g, g, e>
  −
|  <g, h, f>
  −
|
  −
|  <h, e, h>
  −
|  <h, f, g>
  −
|  <h, g, f>
  −
|  <h, h, e>
  −
   
It is part of the definition of a group that the 3-adic
 
It is part of the definition of a group that the 3-adic
 
relation L c G^3 is actually a function L : G x G -> G.
 
relation L c G^3 is actually a function L : G x G -> G.
12,080

edits