Changes

→‎Note 13: centering + spacing
Line 3,059: Line 3,059:     
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
|
+
| align="center" |
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
A:A & A:B & A:C
+
A\!:\!A & A\!:\!B & A\!:\!C
 
\\
 
\\
B:A & B:B & B:C
+
B\!:\!A & B\!:\!B & B\!:\!C
 
\\
 
\\
C:A & C:B & C:C
+
C\!:\!A & C\!:\!B & C\!:\!C
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
 
|}
 
|}
Line 3,072: Line 3,072:     
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
|
+
| align="center" |
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
 
e_{11} & e_{12} & e_{13}
 
e_{11} & e_{12} & e_{13}
Line 3,082: Line 3,082:  
|}
 
|}
   −
So, for example, let us suppose that we have the small universe <math>\{ A, B, C \},\!</math> and the 2-adic relation <math>m = {}^{\backprime\backprime}\, \text{mover of}\, \underline{~~~~}\, {}^{\prime\prime}</math> that is represented by this matrix:
+
So, for example, let us suppose that we have the small universe <math>\{ A, B, C \},\!</math> and the 2-adic relation <math>m = {}^{\backprime\backprime}\, \text{mover of}\, \underline{~~~~}\, {}^{\prime\prime}</math> that is represented by the following matrix:
    
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
|
+
| align="center" |
<math>
+
<math>\begin{bmatrix}
m ~=~
+
m_{AA} (A\!:\!A) & m_{AB} (A\!:\!B) & m_{AC} (A\!:\!C)
\begin{bmatrix}
  −
m_{AA} (A:A) & m_{AB} (A:B) & m_{AC} (A:C)
   
\\
 
\\
m_{BA} (B:A) & m_{BB} (B:B) & m_{BC} (B:C)
+
m_{BA} (B\!:\!A) & m_{BB} (B\!:\!B) & m_{BC} (B\!:\!C)
 
\\
 
\\
m_{CA} (C:A) & m_{CB} (C:B) & m_{CC} (C:C)
+
m_{CA} (C\!:\!A) & m_{CB} (C\!:\!B) & m_{CC} (C\!:\!C)
\end{bmatrix}
+
\end{bmatrix}</math>
</math>
   
|}
 
|}
   Line 3,101: Line 3,098:     
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
|
+
| align="center" |
 
<math>\begin{array}{l}
 
<math>\begin{array}{l}
 
A ~\text{is a mover of}~ A ~\text{and}~ B,
 
A ~\text{is a mover of}~ A ~\text{and}~ B,
Line 3,111: Line 3,108:  
|}
 
|}
   −
In sum:
+
In sum, <math>m\!</math> is represented by the following matrix:
    
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
|
+
| align="center" |
<math>
+
<math>\begin{bmatrix}
m ~=~
+
1 \cdot (A\!:\!A) & 1 \cdot (A\!:\!B) & 0 \cdot (A\!:\!C)
\begin{bmatrix}
  −
1 \cdot (A:A) & 1 \cdot (A:B) & 0 \cdot (A:C)
   
\\
 
\\
0 \cdot (B:A) & 1 \cdot (B:B) & 1 \cdot (B:C)
+
0 \cdot (B\!:\!A) & 1 \cdot (B\!:\!B) & 1 \cdot (B\!:\!C)
 
\\
 
\\
1 \cdot (C:A) & 0 \cdot (C:B) & 1 \cdot (C:C)
+
1 \cdot (C\!:\!A) & 0 \cdot (C\!:\!B) & 1 \cdot (C\!:\!C)
\end{bmatrix}
+
\end{bmatrix}</math>
</math>
   
|}
 
|}
  
12,080

edits